

Service part of thermistor set for MXZ-32SV - E2 has been added.

Please void OB254 REVISED EDITION-B.

OUTDOOR UNIT

No. OB254 REVISED EDITION-C

SERVICE MANUAL

Models

MXZ-32SV -E1 MXZ-32SV -E2

CONTENTS

1. TECHNICAL CHANGES ······2
2. PART NAMES AND FUNCTIONS
3. INDOOR/OUTDOOR
CORRESPONDENCE TABLE3
4. INDOOR UNITS COMBINATION4
5. SPECIFICATION 8
6. NOISE CRITERIA CURVES 9
7. OUTLINES AND DIMENSIONS 10
8. WIRING DIAGRAM 11
9. REFRIGERANT SYSTEM DIAGRAM12
10. PERFORMANCE CURVES13
11. MICROPROCESSOR CONTROL 19
12. TROUBLESHOOTING
13. DISASSEMBLY INSTRUCTIONS 37
14. PARTS LIST 40
15. OPTIONAL PARTS 43

This manual describes technical data of outdoor unit. For indoor unit, refer to the service manuals No. OB229, OB227, OB252, OB212, OB239 and OC165.

Revision A:

MXZ-32SV - E2 has been added.

Revision B:

"Check of HPS" and PARTS LIST have been corrected.

Revision C:

2

Service part of thermistor set for MXZ-32SV - E2 has been added.

MXZ-32RV - EI → MXZ-32SV - EI

- 1. The combination pattern of the indoor unit has been increased.
- 2. Crankcase heater has been disused.
- 3. Refrigerant circuit has been changed.
 - · Disuse of 2-way valve.
 - Disuse of capillary tube $\phi 3 \times \phi 2 \times 500$.
 - Disuse of low pressure switch.
 - Disuse of suction pipe temperature thermistor.

MXZ-32SV -E1 → MXZ-32SV -E2

- 1. Combinations of the connectable indoor units have been increased.
- 2. Noise filter P.C. board has been changed to improve the capacity for protecting the inverter-controlled circuit when the voltage higher than the rated one is supplied with the inverter-controlled circuit.
- 3. Noise filter P.C. board for "E1" and "E2" are not interchangeable.
- 4. Service parts have been changed as follows according to above change;
 - •The value of R(resistor) has been changed. $10\Omega \rightarrow 20\Omega$
 - •TB6(terminal block) has been removed.

PART NAMES AND FUNCTIONS

INDOOR / OUTDOOR CORRESPONDENCE TABLE

NOTE: SLH-1AR is equivalent to class 09 (9000BTU).

3

MCFH-13NV, SEH-1.6AR, SLH-1.6AR is equivalent to class 12 (12000BTU). MCFH-18NV, SEH-2AR, SLH-2AR is equivalent to class 18 (18000BTU).

	OUTDOOR UNIT
	MXZ-32SV-E1, MXZ-32SV-E2
	07+07
	07+09
	07+12
	07+18
	09+09
	09+12
	09+18
	12+12
	12+18
	18+18
	07+07+07
lits	07+07+09
5	07+07+12
0	07+07+18
D D	07+09+09
<u>e</u>	07+09+12
tab	07+09+18
lec	07+12+12
l no	07+12+18
U D	07+18+18
the	09+09+09
of	09+09+12
l oi	09+09+18
nat	09+12+12
ldr	09+12+18
ا کر ا	09+18+18
	12+12+12
	12+12+18
	07+07+07
	07+07+09
	07+07+07+12
	07+07+18
	07+07+09+09
	07+07+09+12
	07+07+09+18
	07+07+12+12
	07+07+12+18
	07+09+09+09
	07+09+09+12
	07+09+09+18
	07+09+12+12
	09+09+09
	09+09+09+12
	09+09+09+18
	09+09+12+12

*There is no combination other than this table.

MXZ-32SV - E1 , MXZ-32SV - E2

4

∧z-jzjv -∟	., , , , , , , , , , , , , , , , , , ,	-5250	- 22			NOTE: Electrical dat	a is for o	outdoor	unit only
Indoor units		1	Cooling	capacity	(kW)	Outdoor unit	Current		Power
combination	Unit A	Unit B	Unit C	Unit D	Total	power consumption (kW)	(<i>I</i> 220V	A) 240V	factor (%)
07	2.2	-	-	-	2.2 (0.9-2.7)	0.75 (0.26-0.93)	3.79	3.47	90
09	2.8	-	-	-	2.8 (0.9-3.2)	0.90 (0.26-1.04)	4.55	4.17	90
12	4.0	-	-	-	4.0 (0.9-4.5)	1.44 (0.26-1.70)	7.27	6.67	90
18	5.0	-	-	-	5.0 (0.9-5.4)	2.30 (0.26-2.98)	11.62	10.65	90
07+07	2.2	2.2	-	-	4.4 (1.8-5.4)	1.54 (0.58-1.96)	7.78	7.13	90
07+09	2.2	2.8	-	-	5.0 (1.8-5.8)	1.62 (0.58-2.05)	8.18	7.50	90
07+12	2.2	4.0	-	-	6.2 (1.8-6.6)	2.28 (0.58-2.51)	11.52	10.56	90
07+18	2.2	5.0	-	-	7.2 (1.8-7.7)	3.09 (0.58-3.65)	15.61	14.31	90
09+09	2.8	2.8	-	-	5.6 (1.8-6.2)	1.90 (0.58-2.18)	9.60	8.80	90
09+12	2.8	4.0	-	-	6.8 (1.8-7.3)	2.73 (0.58-3.22)	13.79	12.64	90
09+18	2.8	5.0	-	-	7.8 (1.8-8.5)	3.74 (0.58-4.56)	18.89	17.31	90
12+12	4.0	4.0	-	-	8.0 (1.8-8.8)	3.96 (0.58-4.90)	20.00	18.33	90
12+18	3.5	4.5	-	-	8.0 (1.8-8.8)	3.96 (0.58-4.90)	20.00	18.33	90
18+18	4.0	4.0	-	-	8.0 (1.8-8.8)	3.96 (0.58-4.90)	20.00	18.33	90
07+07+07	2.2	2.2	2.2	-	6.6 (2.4-8.1)	2.20 (0.70-3.65)	11.11	10.19	90
07+07+09	2.2	2.2	2.8	-	7.2 (2.4-8.6)	2.43 (0.70-4.11)	12.27	11.25	90
07+07+12	2.1	2.1	3.8	-	8.0 (2.4-9.0)	2.98 (0.70-4.27)	15.05	13.80	90
07+07+18	1.9	1.9	4.2	-	8.0 (2.4-9.0)	2.98 (0.70-4.27)	15.05	13.80	90
07+09+09	2.2	2.8	2.8	-	7.8 (2.4-8.9)	2.80 (0.70-4.23)	14.14	12.96	90
07+09+12	1.9	2.5	3.6	-	8.0 (2.4-9.0)	2.98 (0.70-4.27)	15.05	13.80	90
07+09+18	1.7	2.3	4.0	-	8.0 (2.4-9.0)	2.98 (0.70-4.27)	15.05	13.80	90
07+12+12	1.8	3.1	3.1	-	8.0 (2.4-9.0)	2.98 (0.70-4.27)	15.05	13.80	90
07+12+18	1.6	2.8	3.6	-	8.0 (2.4-9.0)	2.98 (0.70-4.27)	15.05	13.80	90
07+18+18	1.5	3.25	3.25	-	8.0 (2.4-9.0)	2.98 (0.70-4.27)	15.05	13.80	90

NOTE: SLH-1AR is equivalent to class 09 (9000BTU).

MCFH-13NV, SEH-1.6AR, SLH-1.6AR is equivalent to class 12 (12000BTU). MCFH-18NV, SEH-2AR, SLH-2AR is equivalent to class 18 (18000BTU).

						ITOTE. Elocitical dat		Juluoon	unit only.
Indoor units			Cooling	capacity	(kW)	Outdoor unit	Cur	rrent A)	Power factor
combination	Unit A	Unit B	Unit C	Unit D	lotal	(kW)	220V	240V	(%)
09+09+09	2.67	2.67	2.67	-	8.0 (2.4-9.0)	2.98 (0.70-4.27)	15.05	13.80	90
09+09+12	2.3	2.3	3.4	-	8.0 (2.4-9.0)	2.98 (0.70-4.27)	15.05	13.80	90
09+09+18	2.1	2.1	3.8	-	8.0 (2.4-9.0)	2.98 (0.70-4.27)	15.05	13.80	90
09+12+12	2.0	3.0	3.0	-	8.0 (2.4-9.0)	2.98 (0.70-4.27)	15.05	13.80	90
09+12+18	1.9	2.7	3.4	-	8.0 (2.4-9.0)	2.98 (0.70-4.27)	15.05	13.80	90
09+18+18	1.8	3.1	3.1	-	8.0 (2.4-9.0)	2.98 (0.70-4.27)	15.05	13.80	90
12+12+12	2.67	2.67	2.67	-	8.0 (2.4-9.0)	2.98 (0.70-4.27)	15.05	13.80	90
12+12+18	2.45	2.45	3.1	-	8.0 (2.4-9.0)	2.98 (0.70-4.27)	15.05	13.80	90
07+07+07+07	2.0	2.0	2.0	2.0	8.0 (2.8-9.0)	2.98 (0.80-4.27)	15.05	13.80	90
07+07+07+09	1.87	1.87	1.87	2.4	8.0 (2.8-9.0)	2.98 (0.80-4.27)	15.05	13.80	90
07+07+07+12	1.7	1.7	1.7	2.9	8.0 (2.8-9.0)	2.98 (0.80-4.27)	15.05	13.80	90
07+07+07+18	1.5	1.5	1.5	3.5	8.0 (2.8-9.0)	2.98 (0.80-4.27)	15.05	13.80	90
07+07+09+09	1.8	1.8	2.2	2.2	8.0 (2.8-9.0)	2.98 (0.80-4.27)	15.05	13.80	90
07+07+09+12	1.6	1.6	2.0	2.8	8.0 (2.8-9.0)	2.98 (0.80-4.27)	15.05	13.80	90
07+07+09+18	1.5	1.5	1.8	3.2	8.0 (2.8-9.0)	2.98 (0.80-4.27)	15.05	13.80	90
07+07+12+12	1.4	1.4	2.6	2.6	8.0 (2.8-9.0)	2.98 (0.80-4.27)	15.05	13.80	90
07+07+12+18	1.3	1.3	2.4	3.0	8.0 (2.8-9.0)	2.98 (0.80-4.27)	15.05	13.80	90
07+09+09+09	1.7	2.1	2.1	2.1	8.0 (2.8-9.0)	2.98 (0.80-4.27)	15.05	13.80	90
07+09+09+12	1.5	1.9	1.9	2.7	8.0 (2.8-9.0)	2.98 (0.80-4.27)	15.05	13.80	90
07+09+09+18	1.4	1.75	1.75	3.1	8.0 (2.8-9.0)	2.98 (0.80-4.27)	15.05	13.80	90
07+09+12+12	1.35	1.75	2.45	2.45	8.0 (2.8-9.0)	2.98 (0.80-4.27)	15.05	13.80	90
09+09+09+09	2.0	2.0	2.0	2.0	8.0 (2.8-9.0)	2.98 (0.80-4.27)	15.05	13.80	90
09+09+09+12	1.8	1.8	1.8	2.6	8.0 (2.8-9.0)	2.98 (0.80-4.27)	15.05	13.08	90
09+09+09+18	1.67	1.67	1.67	3.0	8.0 (2.8-9.0)	2.98 (0.80-4.27)	15.05	13.08	90
09+09+12+12	1.65	1.65	2.35	2.35	8.0 (2.8-9.0)	2.98 (0.80-4.27)	15.05	13.08	90

NOTE: Electrical data is for outdoor unit only.

NOTE: SLH-1AR is equivalent to class 09 (9000BTU). MCFH-13NV, SEH-1.6AR, SLH-1.6AR is equivalent to class 12 (12000BTU). MCFH-18NV, SEH-2AR,SLH-2AR is equivalent to class 18 (18000BTU).

combination	Unit A	Unit B	Unit C	Unit D	Total	power consumption (kW)	(A 220V	A) 240V	factor (%)
07	3.2	-	-	-	3.2 (0.9-4.1)	1.13 (0.27-1.60)	5.71	5.23	90
09	4.0	-	-	-	4.0 (0.9-4.8)	1.32 (0.27-1.70)	6.67	6.11	90
12	6.0	-	-	-	6.0 (0.9-7.2)	1.91 (0.27-2.57)	9.65	8.84	90
18	7.1	-	-	-	7.1 (0.9-7.8)	2.30 (0.27-2.83)	11.62	10.65	90
07+07	3.2	3.2	-	-	6.4 (1.8-7.2)	1.93 (0.48-2.30)	9.75	8.94	90
07+09	3.2	4.0	-	-	7.2 (1.8-8.7)	2.05 (0.48-2.68)	10.35	9.49	90
07+12	3.2	5.4	-	-	8.6 (1.8-10.6)	2.55 (0.48-3.80)	12.88	11.81	90
07+18	2.8	6.2	-	-	9.0 (1.8-10.9)	2.68 (0.48-3.89)	13.54	12.41	90
09+09	4.0	4.0	-	-	8.0 (1.8-10.1)	2.35 (0.48-3.56)	11.87	10.88	90
09+12	3.5	5.3	-	-	8.8 (1.8-10.8)	2.62 (0.48-3.86)	13.23	12.13	90
09+18	3.35	5.95	-	-	9.3 (1.8-11.2)	2.78 (0.48-3.98)	14.04	12.87	90
12+12	4.65	4.65	-	-	9.3 (1.8-11.2)	2.78 (0.48-3.98)	14.04	12.87	90
12+18	4.3	5.0	-	-	9.3 (1.8-11.2)	2.78 (0.48-3.98)	14.04	12.87	90
18+18	4.65	4.65	-	-	9.3 (1.8-11.2)	2.78 (0.48-3.98)	14.04	12.87	90
07+07+07	2.87	2.87	2.87	-	8.6 (2.1-10.6)	2.42 (0.52-3.00)	12.22	11.20	90
07+07+09	2.75	2.75	3.5	-	9.0 (2.1-11.1)	2.50 (0.52-3.30)	12.63	11.57	90
07+07+12	2.4	2.4	4.5	-	9.3 (2.1-11.6)	2.78 (0.52-3.50)	14.04	12.87	90
07+07+18	2.2	2.2	4.9	-	9.3 (2.1-11.6)	2.78 (0.52-3.50)	14.04	12.87	90
07+09+09	2.7	3.3	3.3	-	9.3 (2.1-11.6)	2.78 (0.52-3.50)	14.04	12.87	90
07+09+12	2.25	2.8	4.25	-	9.3 (2.1-11.6)	2.78 (0.52-3.50)	14.04	12.87	90

Heating capacity (kW)

Indoor units

07+09+18

07+12+12

07+12+18

07+18+18

NOTE: Electrical data is for outdoor unit only.

Current

Outdoor unit

Power

NOTE: SLH-1AR is equivalent to class 09 (9000BTU).

2.1

2.0

1.85

1.7

2.6

3.65

3.4

3.8

MCFH-13NV, SEH-1.6AR, SLH-1.6AR is equivalent to class 12 (12000BTU).

-

-

-

-

MCFH-18NV, SEH-2AR, SLH-2AR is equivalent to class 18 (18000BTU).

4.6

3.65

4.05

3.8

9.3

(2.1-11.6)

9.3

(2.1-11.6) 9.3

(2.1-11.6)9.3

(2.1-11.6)

2.78

(0.52 - 3.50)

2.78

(0.52 - 3.50)

2.78

(0.52 - 3.50)

2.78

(0.52 - 3.50)

14.04

14.04

14.04

14.04

12.87

12.87

12.87

12.87

90

90

90

									•
Indoor units			Heating	capacity	(kW)	Outdoor unit	Cur	rent	Power
combination	Unit A	Unit B	Unit C	Unit D	Total	power consumption	(/	A)	factor
					93	2.78	2200	2400	(70)
09+09+09	3.1	3.1	3.1	-	(2.1-11.6)	(0.52-3.50)	14.04	12.87	90
09+09+12	2.65	2.65	4.0	-	9.3 (2.1-11.6)	2.78 (0.52-3.50)	14.04	12.87	90
09+09+18	2.45	2.45	4.4	-	9.3 (2.1-11.6)	2.78 (0.52-3.50)	14.04	12.87	90
09+12+12	2.3	3.5	3.5	-	9.3 (2.1-11.6)	2.78 (0.52-3.50)	14.04	12.87	90
09+12+18	2.2	3.3	3.8	-	9.3 (2.1-11.6)	2.78 (0.52-3.50)	14.04	12.87	90
09+18+18	2.0	3.65	3.65	-	9.3 (2.1-11.6)	2.78 (0.52-3.50)	14.04	12.87	90
12+12+12	3.1	3.1	3.1	-	9.3 (2.1-11.6)	2.78 (0.52-3.50)	14.04	12.87	90
12+12+18	2.9	2.9	3.5	-	9.3 (2.1-11.6)	2.78 (0.52-3.50)	14.04	12.87	90
07+07+07+07	2.32	2.32	2.32	2.32	9.3 (2.8-11.6)	2.78 (0.60-3.50)	14.04	12.87	90
07+07+07+09	2.2	2.2	2.2	2.7	9.3 (2.8-11.6)	2.78 (0.60-3.50)	14.04	12.87	90
07+07+07+12	1.9	1.9	1.9	3.6	9.3 (2.8-11.6)	2.78 (0.60-3.50)	14.04	12.87	90
07+07+07+18	1.8	1.8	1.8	3.9	9.3 (2.8-11.6)	2.78 (0.60-3.50)	14.04	12.87	90
07+07+09+09	2.1	2.1	2.55	2.55	9.3 (2.8-11.6)	2.78 (0.60-3.50)	14.04	12.87	90
07+07+09+12	1.8	1.8	2.3	3.4	9.3 (2.8-11.6)	2.78 (0.60-3.50)	14.04	12.87	90
07+07+09+18	1.7	1.7	2.15	3.75	9.3 (2.8-11.6)	2.78 (0.60-3.50)	14.04	12.87	90
07+07+12+12	1.6	1.6	3.05	3.05	9.3 (2.8-11.6)	2.78 (0.60-3.50)	14.04	12.87	90
07+07+12+18	1.6	1.6	2.8	3.3	9.3 (2.8-11.6)	2.78 (0.60-3.50)	14.04	12.87	90
07+09+09+09	1.95	2.45	2.45	2.45	9.3 (2.8-11.6)	2.78 (0.60-3.50)	14.04	12.87	90
07+09+09+12	1.75	2.15	2.15	3.25	9.3 (2.8-11.6)	2.78 (0.60-3.50)	14.04	12.87	90
07+09+09+18	1.65	2.0	2.0	3.65	9.3 (2.8-11.6)	2.78 (0.60-3.50)	14.04	12.87	90
07+09+12+12	1.55	1.95	2.9	2.9	9.3 (2.8-11.6)	2.78 (0.60-3.50)	14.04	12.87	90
09+09+09+09	2.32	2.32	2.32	2.32	9.3 (2.8-11.6)	2.78 (0.60-3.50)	14.04	12.87	90
09+09+09+12	2.05	2.05	2.05	3.15	9.3 (2.8-11.6)	2.78 (0.60-3.50)	14.04	12.87	90
09+09+09+18	1.95	1.95	1.95	3.45	9.3 (2.8-11.6)	2.78 (0.60-3.50)	14.04	12.87	90
09+09+12+12	1.85	1.85	2.8	2.8	9.3 (2.8-11.6)	2.78 (0.60-3.50)	14.04	12.87	90

NOTE: Electrical data is for outdoor unit only.

NOTE: SLH-1AR is equivalent to class 09 (9000BTU). MCFH-13NV, SEH-1.6AR, SLH-1.6AR is equivalent to class 12 (12000BTU). MCFH-18NV, SEH-2AR,SLH-2AR is equivalent to class 18 (18000BTU).

5

	Outdoor model	MXZ-32SV - E1 , MXZ-32SV - E2				
	Outdoor unit power supply	Single phase				
		220-240V,50Hz				
	Indoor units number	2 to 4				
	Indoor units total capacity (Connec	Total mode	el name 42			
Ē	indoor units total capacity (Simultar	neous operation)	Total mode	el name 42		
/ste	Piping total length		Max	. 60		
ΓΩ,	Connecting pipe length		Max	. 25		
	Height difference (Indoor ~ Outdoo	r)	1	0		
	Height difference (Indoor ~ Indoor)		1	0		
	Function		Cooling	Heating		
city	Capacity	kW	8.0 (0.9~9.0)	9.3 (0.9~11.6)		
apa	Dehumidification	ℓ /h		_		
Ö	Outdoor air flow	m³ /h	2400-	-2640		
	Power outlet	A	2	5		
	Running current	A	15.05-13.80	14.04-12.87		
	Power input	W	2980(260~4270)	2780(270~3500)		
ical	Auxiliary heater	A(kW)		_		
ectr ata	Crankcase heater	W		_		
ĞΠ	Power factor	%	90	0.0		
	Starting current	A	15.05-	-13.80		
	Compressor motor current	A	15.71-14.35	13.44-12.27		
	Fan motor current	A	0.6			
	Coefficient of performance(C.O.P)		2.68	3.35		
sor	Model		THV-247FB/	A (ROTARY)		
ores	Output	W	21	00		
l lie	Winding	Ω	U-V	0.61		
	resistance(at20°C)		V-W 0.61	W-U 0.61		
5	Model		RA6V60-BA			
Fan	Winding	Ω	WHT-BLK 78.7	BLK 78.7 BLK-YLW 26.9		
	resistance(at20°C)		YLW-BLU 11.7	BLU-RED 83.6		
	Dimensions W×H×D	mm	900×900×	320 (+35)		
	Weight	kg	7	9		
	Sound level (Hi)	dB	45-47	46-48		
	Fan speed (Hi)	rpm	630-	-675		
	Fan speed regulator	1		3		
	Refrigerant filling kg		3.	.9		
cial arks	reg ♀ capacity(R-22)					
Spe	Refrigerating oil (Model) cc		870 (MS-56)			
	Thermistor R161	KΩ	13.4 (at	(100°C)		
	Inermistor R162	KΩ	<u>10.0 (a</u>	t 25°C)		
	Inermistor R163	KΩ kΩ	17.0 (a	t 50°C)		
	Thermistor R165	K <u>U</u>	<u> </u>	t 25 C)		
	Inermistor R166,67	KΩ	<u>10.0 (a</u>	t 25°C)		
	I hermistor HI 68,69	10.0 (at 25℃)				

*1 Electrical data is for only outdoor unit.

TEST CONDITIONS COOLING INDOOR	DB27.0°C	WB19.0°C
OUTDOOF	R DB35.0°C	WB24.0°C
HEATING INDOOR	DB20.0°C	
OUTDOOF	R DB 7.0°C	WB 6.0°C

NOTCH	SPL(dB(A))	LINE
COOL(220V)	45	••
COOL(240V)	47	00
HEAT(220V)	46	
HEAT(240V)	48	ΔΔ

MXZ-32SV - E1 MXZ-32SV - E2

6

Test conditions. Cooling :DB35℃ Heating :DB 7°C

OUTLINES AND DIMENSIONS

OUTDOOR UNIT

MXZ-32SV- [1]

SYMBOL	NAME	SYMBOL	NAME	SYMBOL	NAME
C61	POWER FACTOR CAPACITOR	MC	COMPRESSOR	T801	TRANSFORMER
C62,63	SMOOTHING CAPACITOR	MF61	OUTDOOR FAN MOTOR (INNER FUSE)	TB2,3,4	TERMINAL BLOCK
C65	OUTDOOR FAN CAPACITOR	R	RESISTOR	X61,62,63	FAN MOTOR RELAY
CT61,62	CURRENT TRANSFORMER	RT61	DISCHARGE TEMPERATURE THERMISTOR	X64,65	RELAY
DS61,62	DIODE MODULE	RT62	DEFROST TEMPERATURE THERMISTOR	X66,67	RELAY
F801	FUSE (1A)	RT63	EVAPORATION TEMPERATURE THERMISTOR	21S4	R.V. COIL
F911	FUSE (1A)	RT65	FIN TEMPERATURE THERMISTOR	63H1	HIGH PRESSURE SWITCH
L	REACTOR	RT66,67	GAS PIPE TEMPERATURE THERMISTOR	63H2	HIGH PRESSURE SWITCH
L61	COMMON MODE CHOKE COIL	RT68,69	GAS PIPE TEMPERATURE THERMISTOR		
LEV A~D	EXPANSION VALVE	SSR61	SOLENOID COIL RELAY		

NOTE: 1. About the indoor side electric wiring refer to the indoor unit electric wiring diagram for servicing.

2.Use copper conductors only. (For field wiring) 3.Symbols below indicate. (): Terminal block

MXZ-32SV- E2

SYMBOL	NAME	SYMBOL	NAME	SYMBOL	NAME
C61	POWER FACTOR CAPACITOR	MF61	OUTDOOR FAN MOTOR (INNER FUSE)	X61,62,63	FAN MOTOR RELAY
C62,63	SMOOTHING CAPACITOR	R	RESISTOR	X64,65	RELAY
C65	OUTDOOR FAN CAPACITOR	RT61	DISCHARGE TEMPERATURE THERMISTOR	X66,67	RELAY
CT61,62	CURRENT TRANSFORMER	RT62	DEFROST TEMPERATURE THERMISTOR	21S4	R.V. COIL
DS61,62	DIODE MODULE	RT63	EVAPORATION TEMPERATURE THERMISTOR	63H1	HIGH PRESSURE SWITCH
F801	FUSE (1A)	RT65	FIN TEMPERATURE THERMISTOR	63H2	HIGH PRESSURE SWITCH
F911	FUSE (1A)	RT66,67	GAS PIPE TEMPERATURE THERMISTOR	F912	FUSE(3.15A)
L	REACTOR	RT68,69	GAS PIPE TEMPERATURE THERMISTOR	NR63	VARISTOR
L61	COMMON MODE CHOKE COIL	SSR61	SOLENOID COIL RELAY		
LEV A~D	EXPANSION VALVE	T801	TRANSFORMER		
MC	COMPRESSOR	TB1,2,3,4,5	TERMINAL BLOCK		

NOTE: 1. About the indoor side electric wiring refer to the indoor unit electric wiring diagram for servicing.

2.Use copper conductors only. (For field wiring)

3.Symbols below indicate. O: Terminal block Connector

REFRIGERANT SYSTEM DIAGRAM

Diving length apply index with (2, b, c, d)	05 m
Piping length each indoor unit (a, b, c, d)	25M
Total piping length (a+b+c+d)	60m
Height difference between units (H)	10m
Bending point for each unit	25
Total bending point	60

*It does not matter which unit is higher.

- Refrigerant pipe diameter is different according to indoor unit to be connected. When using extension pipes, refer to the tables below.
- When diameter of refrigerant pipe is different from that of outdoor unit union, use optional Different-diameter pipe.
 For further information on Different-diameter pipe, see 15-1.
 Unit : mm (inch)

	Indo	or unit	Extor	sion nine diameter
class	F	Pipe diameter		ision pipe diameter
07/00	Liquid	6.35(1/4)	Liquid	6.35(1/4)
07/09	Gas	9.52(3/8)	Gas	9.52(3/8)
10(10)	Liquid	6.35(1/4)	Liquid	6.35(1/4)
12(13)	Gas	12.7(1/2)	Gas	12.7(1/2)
18	Liquid	6.35(1/4)	Liquid	6.35(1/4)
10	Gas	15.88(5/8)	Gas	15.88(5/8)

	(-)
union dia	meter
Liquid	6.35(1/4)
Gas	12.7(1/2)
Liquid	6.35(1/4)
Gas	12.7(1/2)
Liquid	6.35(1/4)
Gas	9.52(3/8)
Liquid	6.35(1/4)
Gas	9.52(3/8)
	union dia Liquid Gas Liquid Gas Liquid Gas Liquid Gas

PERFORMANCE CURVES

The standard specifications apply only to the operation of the air conditioner under normal conditions, since operating conditions vary according to the areas where these units are installed. The following information has been provided to clarify the operating characteristics of the air conditioner under the conditions indicated by the performance curve.

(1) GUARANTEED VOLTAGE

198 ~ 264V

10

- (2) AIR FLOW
 - Air flow should be set at MAX.

(3) MAIN READINGS

(1) Indoor intake air wet-bulb temperature :	°CWB	
(2) Indoor outlet air wet-bulb temperature :	°CWB	Coolina
(3) Outdoor intake air dry-bulb temperature :	°CDB	5
(4) Total input:	W	
(5) Indoor intake air dry-bulb temperature :	°CDB	
(6) Outdoor intake air wet-bulb temperature :	°CWB	Heating
(7) Total input :	w	
	Information and the second	الملح مراجع المراجع وال

Indoor air wet/dry-bulb temperature difference on the left side of the chart on this page shows the difference between the indoor intake air wet/dry-bulb temperature and the indoor outlet air wet/dry-bulb temperature for your reference at service.

How to measure the indoor air wet-bulb/dry-bulb temperature difference

- Attach at least 2 sets of wet-and dry-bulb thermometers to the indoor air intake as shown in the figure, and at least 2 sets 1. of wet-and dry-bulb thermometers to the indoor air outlet. The thermometers must be attached to the position where air speed is high.
- Attach at least 2 sets of wet-and dry-bulb thermometers to the outdoor air intake. 2.
- Cover the thermometers to prevent direct rays of the sun.
- 3. Check that the air filter is cleaned.
- Open windows and doors of room. 4.

5 ള 얻

- Press the EMERGENCY OPERATION switch once(twice) to start the EMERGENCY COOL(HEAT) MODE. 5.
- When system stabilizes after more than 15 minutes, measure temperature and take an average temperature. 6.
- 10 minutes later, measure temperature again and check that the temperature does not change. 7.

10-2. CAPACITY AND INPUT CORRECTION BY INVERTER OUTPUT FREQUENCY

(OUTDOOR UNIT:MXZ-32SV) The dotted line on graphs connects the frequency range in normal operation shown by the full line and the frequency in test run shown by the point.

10-3. OUTDOOR LOW PRESSURE AND OUTDOOR UNIT CURRENT CURVE

1. 07-class unit in single operation

NOTE: The unit of pressure has been changed to MPa on the international system of units (SI unit system).

The converted score against the traditional unit system can be gotten according to the formula below.

1(MPa • G) =10.2(kgf/cm² • G)

(1) COOL operation

 ${\rm \textcircled{O}Both}$ indoor and outdoor units are under the same temperature/humidity condition.

Dry-bulb temperature(°C)	Relative humidity(%)
20	50
25	60
30	70

②Air flow speed : HI

 $\ensuremath{\textcircled{3}}\xspace$ Inverter output frequency : $\ensuremath{33Hz}\xspace$

<How to work fixed-frequency operation>

- 1.Set emergency switch to COOL or HEAT. The switch is located on indoor unit.
- 2.Press emergency run ON/OFF button.
- 3.Compressor starts running at rated frequency.
- 4. Indoor fan runs at HI speed and continues for 30 minutes.
- 5. To cancel this operation, press emergency run ON/OFF button or any button on remote controller.
- or any button on remote controller.

(2) HEAT operation

 Indoor 	DB(°C)	20.0	Outdoor	DB(°C)	2	7	15	20.0
	WB(°C)	14.5		WB(°C)	1	6	12	14.5

② Set air flow to Hi speed.

③ Inverter output frequency is 45Hz.

2. 09-class unit in single operation

NOTE: The unit of pressure has been changed to MPa on the international system of units (SI unit system). The converted score against the traditional unit system can be gotten according to the formula below.

1(MPa • G) =10.2(kgf/cm² • G)

(1) COOL operation

①Both indoor and outdoor units are under the same

temperature/humidity condition.

Dry-bulb temperature(°C)	Relative humidity(%)
20	50
25	60
30	70

②Air flow speed : HI

③Inverter output frequency: 33Hz

(kgf/cm² · Gauge) (MPa · Gauge)

<How to work fixed-frequency operation>

- 1.Set emergency switch to COOL or HEAT. The switch is located on indoor unit.
- 2.Press emergency run ON/OFF button.
- 3.Compressor starts running at rated frequency.
- 4. Indoor fan runs at HI speed and continues for 30 minutes.
- 5.To cancel this operation, press emergency run ON/OFF button
 - or any button on remote controller.

20.0

14.5

DB(°C)

WB(°C)

2

1

7

6

15

12

(2) HEAT operation

Outdoor low pressure

DB(°C) WB(°C) 14.5

² Set air flow to Hi speed.

³ Inverter output frequency is 45Hz.

20.0

3. 12-class unit in single operation

NOTE:The unit of pressure has been changed to MPa on the international system of units(SI unit system). The converted score against the traditional unit system can be gotten according to the formula below.

(1) COOL operation

 $1(MPa \cdot G) = 10.2(kgf/cm^2 \cdot G)$

③Both indoor and outdoor units are under the same temperature/humidity condition.

Dry-bulb temperature(°C)	Relative humidity(%)
20	50
25	60
30	70

②Air flow speed : HI

3	nvert	er o	utput	freq	uency	:	33Hz	Z
---	-------	------	-------	------	-------	---	------	---

<How to work fixed-frequency operation>

1.Set emergency switch to COOL or HEAT. The switch is located on indoor unit.

2.Press emergency run ON/OFF button.

3.Compressor starts running at rated frequency.

4.Indoor fan runs at HI speed and continues for 30 minutes.

5.To cancel this operation, press emergency run ON/OFF button or any button on remote controller.

(2) HEAT operation

Indoor	DB(°C)	20.0	Outdoor	DB(°C)	2	7	15	20.0
	WB(°C)	14.5		WB(°C)	1	6	12	14.5

² Set air flow to Hi speed.

³ Inverter output frequency is 45Hz.

4. 18-class unit in single operation

NOTE:The unit of pressure has been changed to MPa on the international system of units(SI unit system). The converted score against the traditional unit system can be gotten according to the formula below.

(1) COOL operation

^① Both indoor and outdoor units are under the same temperature/humidity condition.

 $1(\text{MPa} \cdot \text{G}) = 10.2(\text{kgf/cm}^2 \cdot \text{G})$

Dry-bulb temperature(°C)	Relative humidity(%)
20	50
25	60
30	70

 $\ensuremath{\textcircled{}^{2}}\xspace$ Air flow speed : HI

³ Inverter output frequency : 33Hz

(kgf/cm² · Gauge) (MPa · Gauge)

<How to work fixed-frequency operation>

- 1.Set emergency switch to COOL or HEAT. The switch is located on indoor unit.
- 2.Press emergency run ON/OFF button.
- 3. Compressor starts running at rated frequency.
- 4.Indoor fan runs at HI speed.
- 5. To cancel this operation, press emergency run ON/OFF button or any button on remote controller.

Ambient temperature(°C)/Ambient humidity(%)

(2) HEAT operation

1 Indoor	DB(°C)	20.0	Outdoor	DB(°C)	2	7	15	20.0
	WB(°C)	14.5		WB(°C)	1	6	12	14.5

² Set air flow to Hi speed.

³ Inverter output frequency is 45Hz.

INVERTER MULTI SYSTEM CONTROL

11-1. LEV CONTROL

Linear expansion valve (LEV) is controlled by "Thermostat ON" commands given from each unit.

Indoor unit status	LEV opening
Stop of all indoor unit	Opening before stop \rightarrow 500 pulse in 15 minutes
When outdoor unit is operating, some indoor unit stops and some operates.	COOL : 5 pulse (fully closed) HEAT : 59 pulse (slightly opened)
Thermostat OFF in COOL or DRY mode	When the outdoor unit operation (When the other indoor unit operates): 5 pulse. When outdoor unit stops. (When the other indoor unit stops or thermo off): Maintain LEV opening before stop \rightarrow 500 pulse in 15 minutes
Thermostat ON in COOL or DRY mode	 LEV opening for each indoor unit is determined by adding adjustment in accordance with the number of operating unit and the capacity class to standard opening, based on the operation frequency: Ex.) Opening 130 pulse in standard opening 1 → Minimum 80 pulse, Maximum 205 pulse. (Capacity code 4 at 1 unit operation) (Capacity code 1 at 4 unit operation) After starting operation, adjustment in accordance with intake superheat, discharge temperature is included in standard opening. *1 Note: LEV opening in each frequency at DRY operation and COOL operation is the same. However, velocity and compressor operation frequency controls are different. See 11-2 Operational frequency range (As far as the indoor unit velocity control goes, refer to DRY operation in MICROPROCESSOR CONTROL in the indoor unit service manual.)
Thermostat OFF in HEAT mode	 When the outdoor unit operates. (When the other indoor unit operates): 59 pulse When the outdoor unit stops. (When the other indoor unit stops or thermo off): Maintain LEV opening before stop → 500 pulse in 15 minutes.
Thermostat ON in HEAT mode	 LEV opening for each indoor unit is determined by adding adjustment in accordance with the number of operating unit and the capacity class to standard opening, based on the operation frequency: Ex.) Opening 120 pulse in standard opening 1 → Minimum 70 pulse, Maximum 165 pulse. (Capacity code 4 at 1 unit operation) (Capacity code 1 at 4 unit operation) After starting operation, opening becomes the one that adjustment in accordance with discharge temperature was added to basic opening. *1

*1 LEV opening when the outdoor is unit operating: Upper limit 500, Lower limit 59

Determination of LEV standard opening in each indoor unit

 The standard opening is on the straight line, which connects each standard point in the section where divided into seven according to the operation frequency of compressor as shown in the figure below. (LEV opening is controlled in proportion to the operation frequency.)

Note: Opening is adjusted at the standard opening according to the indoor unit conditions.

However, inclination of standard opening in each point of opening does not change with the original curve.
Add opening provided in Difference in Capacity in the table below to the standard opening from 1 to 8.

when capacity of the indoor unit is excluding code 1.

• Add opening provided in Difference in Operation number in the table below to determined LEV opening for each indoor unit, when 2, 3 or 4 indoor units are operated at the same time.

Note: Even when the adjusted standard opening exceeds the driving range from 59 to 500 pulse, actual driving output opening is in a range from 59 to 500 pulse.

< Calculation example of LEV opening >

Cool operation: Compressor frequency 70Hz: 2 unit ON: 18class

(170-150)÷(80-60)×(70-60)+150+75-30=205 pulse

	Standard opening					Difference in capacity		Difference in operation number						
	1	2	3	4	5	6	7	8	Code2	Code3	Code4	2	3	4
COOL	130	130	130	150	170	180	180	190	25	50	75	-30	-40	-50
HEAT	120	130	140	155	170	185	200	215	15	30	45	-10	-40	-50
Capacity code	1	2	3	4										
Indoor unit	07	09	12	18										

<Correction>

	COOL	DRY	HEAT
 ① Suction superheat (MIN gas pipe temperature thermistor - Evaporation temperature thermistor) 			
 ② Each correction * 1 • (Each gas pipe temperature thermistor - Evaporation temperature thermistor) • (Main pipe temperature thermistor - sub pipe temperature thermistor) 	•	•	_
③ Discharge temperature	•*2	•*2	•

* 1 Perform this, when number of operation units is 2 units or more

* 2 When the correction opening of suction superheat is 0, correct the LEV opening by discharge temperature.

(1) LEV opening correction by suction superheat (COOL, DRY) (Suction superheat) = (Minimum gas pipe temperature) - (Evaporation temperature) When COOL and DRY, correct the LEV openings corrected from the table below

Suction superheat (S.H.)	LEV opening correction (pulse)
more than 12	6
10 to12	4
8 to 10	3
6 to 8	2
6 or less	0

(2) Separate correction (COOL,DRY)

(When number of operation unit is 2 units or more)

(a) Correction by the separate superheat

Correct the LEV separately by temperature difference between each gas pipe temperature thermistor and evaporator temperature thermistor.

① Calculate each superheat of the unit from the expression below;

(Superheat) = (Gas pipe temperature thermistor) - (Evaporation temperature thermistor)

- ⁽²⁾ Select minimum superheat from among them.
- ③ Each LEV opening is corrected by difference between each superheat and minimum superheat.

Difference of superheat	LEV opening correction (pulse)
more than 9	8
6 to 9	6
3 to 6	2
6 or less	0

(3) LEV opening correction by discharge temperature

When LEV correction output is 0 pulse by the suction superheat at cool or dry operation, or dry operating, correct LEV is corrected according to the following table.

The target discharge temperature is determined according to frequency zone and number of operation unit of the compressor.

		COOL	., DRY		HEAT			
Operation frequency	N	umber of o	perating ur	nit.	Number of operating unit.			
of compressor	Single	Double	Triple	Quadruple	Single	Double	Triple	Quadruple
Minimum ~ 20	51	60	62	64	55	49	48	47
21 ~ 30	57	64	66	68	58	52	51	50
31 ~ 40	65	68	73	75	63	55	54	53
41 ~ 55	67	72	79	81	70	58	57	56
56 ~ 70	70	77	86	88	80	63	62	61
71 ~ 90	72	83	90	90	85	69	68	67
91 ~ maximum	74	84	90	90	85	74	73	72

Correct the LEV opening according to difference between the target discharge temperature and discharge temperature.

Discharge temperature (°C)	LEV opening correction (pulse)		
	COOL	HEAT	
more than Target discharge temperature+11	10	7	
Target discharge temperature+11 to Target discharge temperature+8	4	6	
Target discharge temperature+8 to Target discharge temperature+5	2	3	
Target discharge temperature+5 to Target discharge temperature+2	1	2	
Target discharge temperature+2 to Target discharge temperature-2	0	0	
Target discharge temperature-2 to Target discharge temperature-5	-1	-1	
Target discharge temperature-5 to Target discharge temperature-8	-2	-1	
Target discharge temperature-8 to Target discharge temperature-11	-5	-3	
Target discharge temperature-11 or less	-8	-7	

11-2. OPERATIONAL FREQUENCY RANGE

Number of	capacity		COOL		DRY		HE	AT	
unit	ċord ²	Min.	Max.	Rated		Min.	Max.	Defrost	Rated
	1		40	24			62	62	36
1	2	18	52	33	25	18	70	70	49
	3		68	46			80	80	65
	4		85	82			86	86	80
	3		80	70			90	95	80
2	4 5	20	105	80	40	20	90	100	88
	6 7 8		110	90			110	100	100
3	3 4 5 6 7 8 9	30	120	93	58	30	120	100	108
4	4 5 6 7 8 9	40	120	101	58	40	120	100	108

Note: When the fan speed of indoor unit is totally Lo notch, restrict the maximum frequency is restricted in 6/7 of the rated frequency.

DRY	COOL	Maximum frequency			
1	1	8/10 of maximum frequency			
2	2				
1	2	9/10 of maximum frequency			
1	3	3/10 01 maximum frequency			
2	1	7/10 of maximum froquency			
3	1	7/10 01 maximum nequency			

11-3. HEAT DEFROSTING CONTROL

(1) Conditions to enter defrosting mode

①. When temperature of defrosting thermistor is -3°C or less.

⁽²⁾.When specified non-defrosting time is counted in the control P.C.board.

(Total time of compressor operating)

Going to defrosting mode at both condition of ① and ②.

(2) Defrosting operation

①. Compressor stops for 50 seconds. Indoor fan is off. Defrosting lamp lights.

- 2.4-way valve reverses flow. Compressor operates by the frequency in heat defrosting control.
- ③. After compressor stops for 35 seconds, 4-way valve reverses flow, then defrosting finishes.

(3) Conditions to finish defrosting mode

- ①. When the defrosting thermistor temperature is 8°C or more.
- 2. When it has spent 10 minutes for defrosting.

Defrosting finishes at condition of ① or ②.

11-4. HIGH PRESSURE PROTECTION

(1) High pressure protection control on heat mode

Temperature of the main pipe temp. thermistor in the indoor unit controls the operation frequency.

When temperature of the main pipe temp. thermistor is approx. 49° C, the operation frequency is set at the current level. When temperature of the main pipe temp. thermistor is approx. 52° C the protection control decreases the frequency at the speed of 3Hz a minutes.

When temperature of the main pipe temp. thermistor is approx. 57° the protection decreases the frequency at the speed of 4Hz a minute and changes the outdoor fan to Low.

Note: Temperature of the pipe temp. thermistor is different depending on the indoor unit.

Temperature of the pipe temp. thermistor is 45°C or less, the protection control is released.

(2) High pressure protection control by high pressure switch (H.P.S)

High-pressure switch controls the operation frequency and outdoor fan motor.

<Control status>

When high-pressure switch is ON.

(When discharge pipe pressure is 2.75 MPa or more.)

- <Control details>
- (a) When cooling or drying

The protection control decreases the compressor frequency at the speed of 10Hz a minute.

- (The compressor operates continuously in min. frequency according to a command to decrease more than the min. level.) (b) When heating
 - The protection control decreases the compressor frequency at the speed of 10Hz a minute.

The protection control changes the outdoor fan to Low.

<Release status>

When high-pressure switch is OFF. (When discharge pipe pressure is 2.35 MPa or more.) Or, the compressor stops.

11-5. DISCHARGE TEMPERATURE PROTECTION CONTROL

This protection controls the compressor ON/OFF and operation frequency according to temperature of the discharge temp. thermistor.

(1) Compressor ON/OFF

When temperature of the discharge temp. thermistor exceeds 116° , the control stops the compressor. When temperature of the discharge temp. thermistor is 80° or less, the controls starts the compressor.

(2) Compressor operation frequency

When temperature of the discharge temp. thermistor is expected to be higher than 116°C, the control decreases 12Hz from the current frequency.

When temperature of the discharge temp. thermistor is expected to be higher than 111°C and less than 116°C, the control decreases 6Hz from the current frequency.

When temperature of the discharge temp. thermistor is expected to be higher than 104°C and less than 111°C, the control is set at the current frequency.

11-6. REFRIGERANT RECOVERY CONTROL ON HEATING

<Control status>

- The control performs when the following status are satisfied everything;
- When there is 1 unit or more not operating indoor unit on heat operation. (Excluding thermo OFF)
- When discharge temperature becomes 107°C or more.
- When it passed 60 minutes or more since the operation has started or the last refrigerant recovery has controlled.

<Control details>

LEV opening, which adjusts to not operating indoor unit, is considered to be 80 pulse.

<Control finish status>

The control finishes either as follows. However, the LEV opening is considered to be 59 pulse.

- When it passed 60 seconds since the control has started.
- When the discharge temperature is 90°C or less.

11-7. OUTDOOR FAN CONTROL

Fan speed is switched according to a number of operating indoor unit and the compressor frequency.

Fan speed

Min. Compressor frequency Max.

<Relation between compressor frequency and fan speed.>

Mode		Indoor unit operation						
Mode	Fan speed	Single	Double	Triple	Quadruple			
COOI	Up	55 Hz	50Hz	50 Hz	50 Hz			
COOL	Down	45 Hz	45 Hz	45 Hz	45 Hz			
НЕЛТ	Up	60 Hz	45 Hz	40 Hz	40 Hz			
IIEAI	Down	50 Hz	40 Hz	35 Hz	35 Hz			

Note

- •When operation, fan speed of Hi/ Low mode changes to VHi/ Hi mode by promoting those fan speeds respectively by 1 step after defrosting is operated. This control is cleared, when the compressor off.
- When overheat protection of P.C. board temperature or fin temperature operates, the outdoor fan speed is fixed to VHi mode regardless of compressor frequency. Also, when the overheat protection is cleared, the fan speed is back to normal
- •When the indoor coil thermistor is 57° C or more on HEAT operation, fan speed is fixed to Low notch . Or, the indoor coil thermistor is 45° C or less on HEAT operation, fan speed is back to normal.

11-8. RELATION BETWEEN MAIN SENSOR AND ACTUATOR

Relation between main sensor and actuator.

		Actuator						
Sensor	Purpose	Compressor	LEV	Outdoor fan motor	Reversing valve			
Discharge temperature thermistor	Protection	\bigcirc	\bigcirc					
Indoor pipe temperature thermistor	Defrosting Protection	0	0	0				
Defrost thermistor	Defrosting	\bigcirc	\bigcirc		\bigcirc			
Evaporation temperature thermistor	Control		0					
Gas pipe temperature thermistor	Control		0					
High pressure switch	Protection	0		0				
Fin temperature thermistor	Protection	0		0				
Capacity code	Control	0	\bigcirc	0				

12-1. CAUTIONS ON TROUBLESHOOTING

- 1. Before troubleshooting, check the following:
 - 1) Check the power supply voltage.
 - 2) Check the indoor/outdoor connecting wire for mis-wiring.
- 2. Take care the following during servicing.
 - 1) Before servicing the air conditioner, be sure to first turn off the remote controller to stop the unit, and then after confirming the horizontal vane is closed, turn off the breaker and / or disconnect the power plug.
 - 2) Be sure to unplug the power cord before removing the front panel, the cabinet, the top panel, and the electronic control P.C. board.
 - 3) When removing the electronic control P.C. board, hold the edge of the board with care NOT to apply stress on the components.
 - 4) When connecting or disconnecting the connectors, hold the housing of the connector. DO NOT pull the lead wires.

Lead wiring

Housing point

3. Troubleshooting procedure

- 1) First, check if the OPERATION INDICATOR lamp on the indoor unit is flashing on and off to indicate an abnormality. To make sure, check how many times the abnormality indication is flashing on and off before starting service work.
- 2) If the electronic control P.C. board is supposed to be defective, check the copper foil pattern for disconnection and the components for bursting and discoloration.
- 3) When troubleshooting, refer to 12-2 and 12-3.

12-2. INSTRUCTION OF TROUBLESHOOTING

• Check the indoor unit with referring to the indoor unit service manual, and confirm that there is any problem in the indoor unit. Then, check the outdoor unit with referring to this page.

12-3. TROUBLESHOOTING CHECK TABLE

Note . LED indicates "00" in the normal status.

7-segment LED display	Error mode
00	Normal

* If there is defect in the following parts(electronic control P.C. board, relay P.C. board, high pressure switches(63H1,63H2),indoor /outdoor fan motor, or indoor coil thermistor), the compressor may stop even with the display remained at " 00". In any case, reset the breaker and check the above-stated parts.

Symptom	Outdoor unit does not operate.						
Display	Detecting method	Detecting method	Check points				
ЯЧ (A4)	Outdoor power system abnor- mality	When the compressor operation has been interrupted by overcurrent protection continuously three times within 1 minute after start-up, the compressor stops operation.	Inverter output Compressor				
R3 (A3)	Outdoor electronic control P.C. board abnormality	When the nonvolatile memory data cannot be read properly on the out- door controller board	Outdoor electronic control P.C. board				
P; (P1)	Indoor unit and LEV abnor- mality	When the drain abnormality is detected in the indoor unit and the indoor main coil temperature is too low, or when any abnormality is detected in the components of indoor unit	 Check the abnormality indication on the indoor unit. LEV 				

Symptom	Outdoor unit stops and restarts every 3 minutes.				
Display	Detecting method	Detecting method	Check points		
E 9 (E9)	Evaporation temperature ther- mistor abnormality	The compressor stops when a short or open circuit occurs in the evap- oration temperature thermistor during compressor running.	 Check the characteristic of the evaporation temperature thermistor. Refer to ⁽²⁾ "Check of thermistor". Check the contact of P.C. board connectors. 		
E 6 (E6)	Discharge temperature ther- mistor abnormality	The compressor stops when a short or open circuit occurs in the dis- charge temperature thermistor during compressor running.	 Check the characteristic of the discharge temperature thermistor. Refer to ©"Check of thermistor". Check the contact of P.C. board connectors. 		
F 8 (F8)	Fin temperature thermistor abnormality	The compressor stops when a short or open circuit occurs in the fin tem- perature thermistor during compressor running.	 Check the characteristic of the fin temper- ature thermistor. Refer to ^(C) "Check of thermistor". Check the contact of P.C. board connec- tors. 		
R8 (A8)	Overcurrent protection	When over current is applied to the power module, the compressor stops and restarts in 3 minutes.	 Check the inverter and compressor. Refer to ^(C) "Check of inverter/compressor". Check the amount of gas. Check the indoor/outdoor air flow for short cycle. Check the indoor unit air filter for clogging. 		
d 5 (d6)	Discharge temperature over- heat protection	When the discharge temperature thermistor detects 116°C or above, the compressor stops and restarts operation in 3 minutes. (Protection will be released at 100°C or below.)	Check the amount of gas and the refriger- ant cycle.Check the outdoor unit air passage.		
ď 4 (d4)	Fin temperature overheat pro- tection	When the fin temperature thermistor detects 89°C or above, the com- pressor stops and restarts operation in 3 minutes.	 Check the outdoor unit air passage. Check the power module. Check the outdoor fan motor. Refer to "Check of fan motor". 		
d1 (d7)	High pressure protection	When the compressor starts, primary current or output voltage stops the compressor and restarts in 3 minutes.	 Amount of gas Outdoor unit air passage. Check the ball valve. 		
F S (F5)	Room-A gas pipe temperature thermistor abnormality	When a short or open circuit occurs in the Room-A gas pipe temperature thermistor.	 Room A gas pipe temperature thermistor characteristic. Contact of P.C. board connectors. 		
F 5 (F6)	Room-B gas pipe temperature thermistor abnormality	When a short or open circuit occurs in the Room-B gas pipe temperature thermistor.	 Room B gas pipe temperature thermistor characteristic. Contact of P.C. board connectors. 		
F1 (F7)	Room-C gas pipe temperature thermistor abnormality	When a short or open circuit occurs in the Room-C gas pipe temperature thermistor.	 Room C gas pipe temperature thermistor characteristic. Contact of P.C. board connectors. 		
P9 (P9)	Room-D gas pipe temperature thermistor abnormality	When a short or open circuit occurs in the Room-D gas pipe temperature thermistor.	 Room D gas pipe temperature thermistor characteristic. Contact of P.C. board connectors. 		

Symptom	Outdoor unit operates. (The compressor operates at reduced frequency.)				
Display	Detecting method	Detecting method	Check points		
d 8 (d8)	Frequency drop by current protection	When the outdoor unit input current exceeds 22.5 A, the compressor operates at reduced frequency.			
d 9 (d9)	Frequency drop by overload protection	When the compressor load exceeds the specified value, the compressor operates at reduced frequency.	These symptoms do not mean any abnormality of the product but check the		
Ъ	 Frequency drop by high pressure protection Frequency drop by defrosting in cooling When indoor pipe temperature exceeds 55°C during heating, the compressor operates at reduced frequency. 		following points. • Air filter clogging.		
(d7)			Short cycle of indoor/outdoor air flow.		
d 6 (d6)	Frequency drop by discharge temperature protection	When the discharge temperature exceeds 110°C, the compressor operates at reduced frequency.			
d 3 (d3)	Frequency drop by high pres- sure switch protection	When the high pressure exceeds 2.75MPa (28 kgf/cm ^{2·G}), the compressor operates at reduced frequency. In addition, the fan speed changes.	 Amount of gas. Outdoor unit air passage. 		
di (d1)	d1) Low discharge temperature of which 50°C in COO and 48.4 or less in HEAT for 20 minutes, the compressor operates cor tinuously.		Check the amount of gas. • Replace the outdoor controller board. • Check the contact of LEV board connec- tors.		

Symptom	Outdoor unit operates.				
Display	Detecting method	Detecting method	Check points		
£1 (E7)	Defrost thermistor abnormality	When a short or open circuit occurs in the defrost thermistor during heating * In this case, the compressor continues to operate.	Defrost thermistor characteristic. Contact of P. C. board connectors.		
አч (h4)	Power factor detection abnor- mality	When the compressor power factor cannot be detected * In this case, the compressor keeps running.	Compressor wiring.		

12-4. TROUBLE CRITERION OF MAIN PARTS

Part name	Check method and criterion				
Defrost thermistor	Measure the resistance (Part temperature -10)	ce using a tester. °C ~ 40°C)			
temperature thermistor		Normal	abno	ormal	
	5k	κΩ ~ 55kΩ	Open or sh	ort-circuit	ted
Discharge temperature thermistor	Measure the resistanc (Part temperature : 20	ce using a tester, after wa ºC ~40°C) Normal	rming up the thermis	tor by hol	ding by hand.
	100	kΩ ~ 250kΩ	Open or sh	ort-circuit	ted
Compressor W RED WHT BLK	Measure the resistanc (Winding temperature 1Each pha	ce between terminals usin : -10°C ~ 40°C) Normal ase 0.53Ω ~ 0.66Ω	g a tester. abn Open or sh	onormal	
Outdoor fan motor					
WHT	(Part temperature : -1)	ce between lead wires usi 0°C ~ 40°C)	ng a tester.		
		Normal	•	abı	normal
		<u>69.0Ω ~ 86</u> 22.0Ω ~ 20	5.0Ω	Open or	
BLK BLK	VIW - BIII	<u>v</u> 23.002 ~ 30.002		(Not	including
Short 95±15°C	BED - BLK	$\begin{array}{c} \text{RED - BLK} & 73.0\Omega \sim 91.0\Omega \end{array}$		WHT - ORN)	
Open 135±5℃					
	Measure the resistanc	ce using a tester. (Part ter	nperature -10°C ~ 40)°C)	
R. V. coil	Normal ab		abn	onormal	
	164	0Ω ~ 2310Ω	Open or sh	short-circuited	
Linear expansion valve	Measure the resistanc	ce using a tester.(Part terr	perature -10°C ~ 40	°C)	
WHT	Lead wire color	r Normal		Abnorma	al
	WHT - RED RED - ORN YLW - BRN BRN - BLU	21 ~ 26Ω	Open	or short-c	circuited
	Measure the resistance (Part temperature -10)	ce using a tester. °C ~ 40°C)			
		Pressure		Normal	abnormal
High pressure switch		Operation OFF			
(HPS)	HPS1	2.35 ± 0.15MPa (24 :	± 1.5kg / cm ²)	Short	Other than
	HPS2	2.55 ± 0.2MPa (26	± 2kg / cm ²)		those list-
	HPS1 HPS2	2.75 ± 8:9 ⁵ MPa (28 ± 3.43 ± 8.15 MPa (35 ±	ີ 9:5 kg / cm²) ີ 1.₅kg / cm²)	Open	ed at left

P Inner protector

12-5. TROUBLESHOOTING FLOW

Outdoor unit does not operate. (LED display: display OFF)

- When cooling, heat exchanger of non-operating indoor unit frosts.
- When heating, non-operating indoor unit get warm.

(LED display: 00, Pl)

When thermistor is abnormal.					
Check of thermistor					
Start					
Disconnect the connector in the electronic con	ntrol P. C. boa	ard (see below table), and Abnormal	Replace the thermistor		
measure the resistance of thermistor to check	whether the	thermistor is normal or not.			
↓Normal					
Reconnect the connectors (CN661, CN662 an Turn on power supply to the indoor and outdoo	d CN663) ar or unit. Three	nd disconnect the lead wire leading to the minutes later EMERGENCY OPERATI	e compressor. ON starts.		
↓					
Does thermistor operate 10 minutes or more the thermistor abnormality is not displayed?	hough the	No Replace the electronic control P. C. board.			
Yes					
Normal					
Thermistor	Symbol	Connector Pin No	1		
Defrost thermistor	RT62	Between CN661 pin1 and pin2	-		
Discharge temperature thermistor	RT61	Between CN661 pin3 and pin4	-		
Evaporation temperature thermistor	RT63	Between CN661 pin5 and pin6			
Gas pipe temperature thermistor (Unit A)	RT66	Between CN662 pin1 and pin2	1		
Gas pipe temperature thermistor (Unit B)	RT67	Between CN662 pin3 and pin4]		
Gas pipe temperature thermistor (Unit C)	RT68	Between CN662 pin5 and pin6			
Gas pipe temperature thermistor (Unit D)	RT69	Between CN662 pin7 and pin8			
Fin temperature thermistor	RT65	Between CN663 pin1 and pin2]		
Check of fan motor Start					
Check the connection of fan motor connector, connectors (CN901, CN902) on noise filter P. C	connectors (C. board.	CN851, CN852) on electronic control P.	C. board, and		
· · · · · · · · · · · · · · · · · · ·					
Disconnect the fan motor connector, and meas fan motor winding to check the winding character	sure the resis teristic.	stance of the Abnormal	Replace the fan motor.		
Normal					
 Disconnect the lead wire leading to the com indoor and outdoor unit. Three minutes later Check the voltage between pin 2 and pin 3, 	pressor. Turr , EMERGEN pin 2 and pir	n on power supply to the CY OPERATION starts. n 5, pin 2 and pin 6 at the fan motor con	nector.		
↓					
Is there voltage of 220V AC - 240V AC?					
▼ No					
 1. Turn off power supply of the indoor and outdoor unit, and disconnect the connector (CN851, CN852). 2. Is the voltage 0V, when the voltage between CN852 pin1 (+) and CN851 pin1 (-), pin2 (-), or pin3 (-) are measured after the power supply is turned on the outdoor unit? 					
Yes					
Is there voltage of 12V DC between CN852 pir turns on the indoor unit and EMERGENCY OP	n1 (+) and pi PERATION st	n3 (-), when power supply No rarts in three minutes?			
Yes					
Replace the noise filter P. C. board.					

① In the case that the indoor fan and outdoor fan operate but the compressor does not operate, it causes that the high pressure switch can be operated once.

First of all, check the high pressure switch can be shorted, turn OFF the power and turn ON again 1 minute later. ② Indoor unit dose not operate. (difference modes)

- When you try to run two indoor unit simultaneously, one for cooling and the other for heating, the unit which transmits signal to the outdoor units earlier decides the operation mode. The other unit indicates as shown in the figure below.
- When the above situation occurs, set all the indoor units to the same mode, turn OFF the indoor units, and then turn them back ON.
- Though the top of the indoor unit sometimes gets warm, this does not mean malfunction. The reason is that the refrigerant gas continuously flows into the indoor unit even while it is not operating.

Noise filter P.C.board MXZ-32SV - E1

MXZ-32SV - E2

I.P.M P.C.board MXZ-32SV - E1 MXZ-32SV - E2

12V DC 12V DC DE00N155B B CT62 •••• §0 RSG ł RB21 12V R541 R551 TAB66 × ^{D731}₩C ů ^ž(‡ ТАВ65 16 721 PM30CTJ060 ي الآلي الألي TAB64 R521 C 711 Ĵ(₩, 320V DC } RS z 0701 -11 Jae 2 R501 $\left[\frac{1}{2}\left(\mathbf{u}_{+}\right)\right]$ 2000 σ PG20

Relay P.C.board MXZ-32SV - E1 MXZ-32SV - E2

DISASSEMBLY INSTRUCTIONS

13-1. MXZ-32SV - E1 , MXZ-32SV - E2 OUTDOOR UNIT

OPERATING PROCEDURE	PHOTOS
 2.Removing the fan motor (1)Remove the top panel (five screws), the service panel (four screws), and the front panel (two screws). (See Photo 1.) (2)Disconnect the fan motor connector. (3)Remove the propeller. (4)Remove the fan motor. 	
 3.Removing the 4-way valve (1)Remove the screws of the top panel, and remove it. (See Photo 1.) (2)Remove the service panel, rear panel, and connect cover panel.Recover refrigerant gas. (3)Remove the electrical parts. (See Photo 2.) (4)Detach the brazed joint of 4-way valve and pipe. (See Photo 4.) 	Photo 4
 4.Removing the linear expansion valve (1)Remove the service panel. (See Photo 1.) (Gas recovery is not required if the unit is pumped down.) (2)Remove the coil of linear expansion valve. (3)Detach the brazed joint of linear expansion valve and pipe. 	Photo 5

14 PARTS LIST

14-1. OUTDOOR UNIT FUNCTIONAL PARTS MXZ-32SV -E1 MXZ-32SV -E2

Part numbers that are circled are not shown in the illustration.

			Symbol	Q'ty / u	nit	
No.	Parts No.	Parts Name	in Wiring	MX7-32SV- F1	MX7-325V- F2	Remarks
			Diagram	WIX2-323 V- L1		
1	M21 17A 501	PROPELLER FAN		1	1	
2	T2W E40 301	OUTDOOR FAN MOTOR	MF61	1	1	RA6V60-□□
3	T2W E40 452	I.P.M P.C. BOARD		1	1	
4	M21 17A 447	DIODE STACK	DS62	1	1	
5	M21 17A 443	DIODE MODULE	DS61	1	1	
6	M21 17E 337	REACTOR	L	1	1	220 <i>µ</i> F 400V
7	T2W E40 357	POWER FACTOR CAPACITOR	C61	1	1	2500 <i>µ</i> F 400V
8	T2W E40 356	SMOOTHING CAPACITOR	C62,C63	2	2	
9	T2W E70 451	ELECTRONIC CONTROL P.C. BOARD		1	1	
10	T2W E79 424	NOISE FILTER P.C. BOARD		1		
	T2W G01 424	NOISE FILTER P.C. BOARD			1	
11	T2W E58 376	TERMINAL BLOCK		4	4	Indoor unit connecting
12	T2W E65 375	TERMINAL BLOCK		1	1	Power supply
13	M21 42A 340	RELAY	X64	1	1	
14	T2W E70 307	GAS PIPE TEMPERATURE THERMISTOR	RT66,67,68,69	1	1	A,B,C,D
15	M21 42A 308	FIN TEMPERATURE THERMISTOR	RT65	1	1	
16	M21 17A 362	RESISTOR	R	1		
	T2W G01 362	RESISTOR			1	
17	T2W E70 308	THERMISTOR SET	RT61, 62, 63	1	1	EVAPORATION DISCHARGE, DEFROST
18	T2W E70 398	R. V. COIL	21S4	1	1	
19	T2W E40 441	RELAY P.C. BOARD		1	1	
20	T2W E66 382	FUSE	F801, F911	2	2	
21	T2W E89 313	FUSE & VARISTOR SET	F912, NR63		1	250V/ 3.15A
22	M21 370 378	TERMINAL BLOCK	TB4	1		

14-2. OUTDOOR UNIT STRUCTURAL PARTS

MXZ-32SV - E1 MXZ-32SV - E2

Part numbers that are circled are not shown in the illustration.

			Symbol	Q'ty / unit		
No.	Parts No.	Parts Name	in Wiring	MX7-32SV- F1	MX7-32SV- F2	Remarks
			Diagram	WIAZ-323V- [L]		
1	M21 AS2 232	FRONT PANEL		1	1	
2	M21 17A 245	SERVICE PANEL		1	1	
3	T92 500 800	COMPRESSOR	MC	1	1	THV-247FBA
	T2W E70 654	EXPANSION VALVE	LEV D	1	1	D room
4	T2W E95 654	LEV COIL		1	1	D room
	T2W E95 655	EXPANSION VALVE		1	1	D room
	T2W E70 653	EXPANSION VALVE	LEV C	1	1	C room
5	T2W E95 653	LEV COIL		1	1	C room
	T2W E95 655	EXPANSION VALVE		1	1	C room
	T2W E70 652	EXPANSION VALVE	LEV B	1	1	B room
6	T2W E95 652	LEV COIL		1	1	B room
	T2W E95 655	EXPANSION VALVE		1	1	B room
	T2W E70 651	EXPANSION VALVE	LEV A	1	1	A room
7	T2W E95 651	LEV COIL		1	1	A room
	T2W E95 655	EXPANSION VALVE		1	1	A room
8	T2W E79 290	BASE ASSEMBLY		1	1	
9	M21 42E 644	UNION		1	1	1/2,3/8,1/4 SET
10	T2W E40 247	PIPE COVER		1	1	
11	T2W E70 248	REAR PANEL		1	1	
12	M21 48A 961	4-WAY VALVE		1	1	
13	T2W E79 646	HIGH PRESSURE SWITCH		1	1	
14	M21 17A 297	TOP PANEL	63H1	1	1	2.75MPa(28kg/cm ²)
15	T2W E40 523	REAR GUARD		1	1	
16	M21 42E 630	HEAT EXCHANGER		1	1	
17	M21 17A 249	SIDE PANEL		1	1	
(18)	T2W E40 646	HIGH PRESSURE SWITCH	63H2	1	1	3.43MPa(35kg/cm ²)
(19)	M21 986 936	CAPILLARY TUBE(ϕ 4.0× ϕ 2.4×2000)		3	3	<i>ϕ</i> 4.0× <i>ϕ</i> 2.4×400
20	M21 LV0 936	CAPILLARY TUBE SET(\$\$.0 \times\$\$0.0 \times\$\$00000000000000000000000000000000000		4	4	Ø3.0ר2.0×200 4PCS/SET
21	T2W E59 936	CAPILLARY TUBE (ϕ 2.5× ϕ 0.6×1000)		1	1	<i>ϕ</i> 2.5× <i>ϕ</i> 0.6×1000
22	T2W E70 936	CAPILLARY TUBE (<i>\phi</i> 2.0× <i>\phi</i> 0.6×750)		1	1	<i>∲</i> 2.5×∕0.6×750

-When servicing, cut the tube to the proper length as shown in the REFRIGERANT SYSTEM DIAGRAM on page 12.

14-3. ACCESSORY PARTS

MXZ-32SV -E1 MXZ-32SV -E2

			Symbol	Q'ty / unit		
No.	Parts No.	Parts Name	in Wiring	MXZ-	32SV	Remarks
			Diagram	E1	E2	
1	T2W E59 704	DRAIN SOCKET ASSEMBLY		1	1	DRAIN SOCKET ×1 DRAIN CAP ×2

OPTIONAL PARTS

15-1. DIFFERENT-DIAMETER PIPE

MXZ-32SV	Model name	Model code	Connected pipes diameter (mm)	Length A	Length B	Length C
	MAC-454JP	51H-454	φ9.52 — φ12.7 (3/8) (1/2)	∮9.52 (3/8)	φ12.7 (1/2)	69
For different- diameter pipes	MAC-455JP	51H-455	φ12.7 — φ9.52 (1/2) (3/8)	¢12.7 (1/2)	∮9.52 (3/8)	65
	MAC-456JP	516456	φ12.7 — φ15.88 (1/2) (5/8)	¢12.7 (1/2)	¢15.88 (5/8)	66.5

Unit : mm (inch)

15-2. OUTLET GUIDE

Changes air discharge direction.

Applied unit	Model name	Model code
MXZ-32SV	MAC-855SG	51H-855

HEAD OFFICE: TOKYO BLDG., 2-7-3, MARUNOUCHI, CHIYODA-KU, TOKYO 100-8310, JAPAN

© Copyright 2000 MITSUBISHI ELECTRIC ENGINEERING CO.,LTD Distributed in Jun. 2010. No.OB254 REVISED EDITION-C 6 Distributed in Jun. 2006. No.OB254 REVISED EDITION-B 7 Distributed in Jan. 2003. No.OB254 REVISED EDITION-A 7 Reprinted in Feb. 2002. No.OB254 12 Reprinted in Dec. 2001. No.OB254 5 Reprinted in Dec. 2001. No.OB254 50 Reprinted in Feb. 2001. No.OB254 10 Distributed in May 2000. No.OB254 523 Made in Japan