

PUZ-ZM140YKA2

CIBSE TM65 Embodied Carbon Mid-level Calculation

Assesment Date:

2nd April 2024

Assessor / Organisation:

RI / Mitsubishi Electric LES UK

Contact:

embodied.carbon@meuk.mee.com

Embodied Carbon with 'Mid-level TM65 Calculation' Method (kg CO₂e) Total:

3,163

Embodied	Carbon Re	sult per kW	/ (kg CO ₂ e/	kW):	Capacit	ies (kW)*		13.4 236
	1	,656			1,507			Embodied Carbon - Without Refrigerant Leakage (kg CO ₂ e) Embodied Carbon - Refrigerant Leakage Only (kg CO ₂ e)
-	500	1,000	1,500	2,000	2,500	3,000	3,500	kg CO₂e

PUZ-ZM140YKA2 - Product Information

Split Type Outdoor Unit
13.4
118
Υ
15
R32
675
25.14
UK
Category 3: High

^{*}Nominal cooling capacity conditions as per data book

PUZ-ZM140YKA2

CIBSE TM65 Embodied Carbon Mid-level Calculation

Embodied Carbon Results Breakdown (kg CO ₂ e)	
A1: Material extraction	998
A2: Transport	93
A3: Manufacturing	30
A4: Transport to Site	28
B1: Use	1,458
B3: Repair	116
C1: Deconstruction	49
C2: Transport	2
C3: Waste Processing	7
C4: Disposal	0

Ellibodied Carbon Results - Without Reinigerant Leakage (kg CO2e)				
A1-C4 (excluding B1,C1)	1,274			
A1-C4 with Buffer Factor (excluding B1, C1)	1,656			

Embodied Carbon I	Result - Refrigerant Lea	ikage Only (kg CO ₂ e)

Embodied Carbon Bosults - without Bofridarant Loakada (kd CO a)

B1 (Refrigerant leakage during use) + C1 (Refrigerant leakage end of life) 1,507

Assumptions	
A1: Material carbon coefficient source	TM65 Table 2.1 & The ICE Database
B1: Refrigerant annual leakage rate (%)	4
C1: Refrigerant end of life recovery rate (%)	98
B3: Materials replaced as part of repair (%)	10 (TM65 Assumption)
C4: Percentage of product going to landfill (%)	30

Telephone: 01707 282880 email: embodied.carbon@meuk.mee.com les.mitsubishielectric.co.uk

Mitsubishi Electric Livino Environmental Systems UK

UNITED KINGDOM Mitsubishi Electric Europe Living Environment Systems Division, Travellers Lane, Hatfield, Hertfordshire, AL10 8XB, England. Telephone: 01707 282880 IRELAND Mitsubishi Electric Europe, Westgate Business Park, Ballymount, Dublin 24, Ireland. Telephone: (01) 419 8800 International code: (003531)

Country of origin: United Kingdom - Italy - Turkey - Japan - Thailand - Malaysia. @Mitsubishi Electric Europe 2024. Mitsubishi and Mitsubishi Electric are trademarks of Mitsubishi Electric Europe B.V. The company reserves the right to make any variation in technical specification to the equipment described, or to withdraw or replace products without prior notification or public announcement. Mitsubishi Electric is constantly developing and improving its products. All descriptions, illustrations, drawings and specifications in this publication present only general particulars and shall not form part of any contract. All goods are supplied subject to the Company's General Conditions of Sale, a copy of which is available on request. Third-party product and brand names may be trademarks or registered trademarks of their respective owners.

Note: The fuse rating is for guidance only and please refer to the relevant databook for detailed specification. It is the responsibility of a qualified electrician/electrical engineer to select the correct cable size and fuse rating based on current regulation and site specific conditions. Mitsubishi Electric's air conditioning equipment and heat pump systems contain a fluorinated greenhouse gas, R410A (GWP-2088), R290 (GWP-30), R32 (GWP-675), R407C (GWP-1774), R134a (GWP-1430), R513A (GWP-631), R454B (GWP-44C) (GWP-148), R1234ze (GWP-7) or R1244 (GWP-1430), R513A (GWP-6750), R407C (GWP-1670) or R134a (GWP-1300).

Effective as of June 2024

