

TX2-W-G04 /H

Water Sourced Reversible Heat Pump with Inverter Centrifugal Compressors

The Climaveneta **TX2-W-G04 /H** is a high performance water sourced reversible heat pump optimised for comfort heating and cooling. It uses state of the art oil free centrifugal compressors and a low GWP refrigerant R1234ze ensuring high efficiency and silent operation.

Available in 15 sizes ranging from 263kW to 2146kW the **TX2-W-G04 /H** operates with best in class sound levels while having high Seasonal Coefficient of Performance (SCOP). With its compact design the **TX2-W-G04 /H** has class leading performance to footprint ratio allowing for a simplified installation and low shipping costs.

The **TX2-W-G04 /H** can also be supplied with a variety of options including source side control valves, energy and thermal meters, BEMS cards and leak detection.

R1234ze CLIMAVENETA

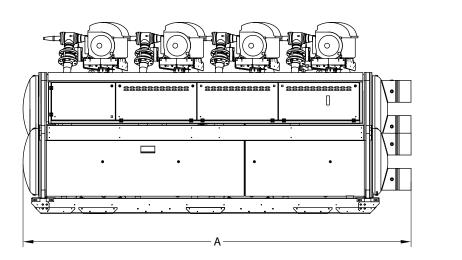
Key Features & Benefits:

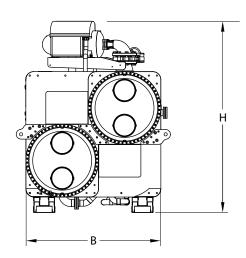
- Exceptional efficiency in a compact footprint
- Silent operation achieve using state of the art oil free centrifugal compressors optimised for R1234ze
- High quality shell and tube heat exchangers
- Low GWP refrigerant (GWP100 = 1)*
- Large variety of sizes to suit a wide variety of applications
- Flexible composition with water connections to the evaporator and condenser that can be deplyed on the right or left, to fit any application.

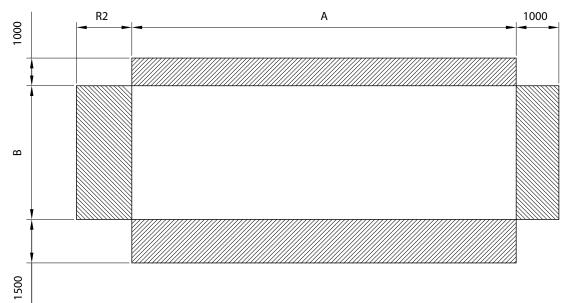
*IPCC AR5

TX2-W-G04 /H			0251	0351	0551	0602	0702	0872	1022	1203	1314	1363	1404	1553	1584	1914	2064
Performance - Heating Only (Gross Va	lue) *2*4																
Total Heating Capacity	k۱	N	297.9	406.7	643.6	731.1	828.8	1034.0	1269.0	1398.0	1576.0	1650.0	1691.0	1905.0	1869.0	2342.0	2510.0
Total Power Input	k۱	N	59.3	84.3	137.4	144.7	169.7	220.6	272.4	299.6	309.8	357.0	334.5	391.4	383.2	474.7	523.2
COP	k١	N/kW	5.02	4.82	4.68	5.05	4.88	4.69	4.66	4.67	5.09	4.62	5.06	4.87	4.88	4.93	4.80
Performance - Heating Only "2"3"5																	
Total Heat Capacity	k١	N	263.6	366.2	546.0	642.2	743.4	907.5	1,091.0	1,245.0	1,394.0	1,448.0	1,494.0	1,623.0	1,639.0	2,009.0	2,146.0
COP	k١	N/kW	5.04	4.93	5.30	5.14	4.98	5.12	5.24	5.01	5.21	5.09	5.21	5.41	5.20	5.38	5.37
Performance - Cooling Only "1"3"5																	
Total Cooling Capacity	k١	N	209.3	299.8	425.2	511.6	601.6	725.4	850.5	1,016.0	1,108.0	1,146.0	1,197.0	1,264.0	1,319.0	1,571.0	1,681.0
EER	k١	N/kW	5.67	5.78	6.04	5.87	5.79	5.88	5.98	5.75	6.07	5.83	6.13	6.20	6.08	6.19	6.16
Seasonal Performance - Ambient Refrigeration ^{'6}		*6															
Prated,c	k١	N	209.3	299.8	425.2	511.6	601.6	725.4	850.5	1016.0	1108.0	1146.0	1197.0	1264.0	1319.0	1571.0	1681.0
SEER			8.99	9.15	9.77	9.36	9.25	9.53	10.02	9.33	9.50	9.31	9.65	10.16	9.54	9.83	10.13
Electrical Data																	
Power Supply	V/	/ph/Hz	400/3/50	400/3/500	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50
F.L.A.*7 Total	A	_	117	165	231	282	330	396	462	561	612	627	660	693	726	858	924
Exchangers																	
Minimum Water Flow in Cooling ^{*1} Evapor	ator I/s	S	17.61	17.61	40.28	45.83	40.28	50.00	72.22	61.94	85.28	87.78	85.28	108.30	85.28	134.20	134.20
Minimum Water Flow in Heating "2 Conde	nser I/s	s	8.61	11.67	18.61	21.11	21.11	28.61	35.28	38.06	44.44	41.39	48.06	50.83	48.06	59.72	69.17
Heat Exchanger in Heating "2																	
Pressure Drop at Heat Exchanger User S	de kF	Pa	28.50	29.70	25.20	28.00	37.50	30.80	29.80	26.20	29.30	29.70	29.00	31.00	34.90	34.10	29.20
Water Flow User S	de I/s	s	12.71	17.66	26.34	30.98	35.86	43.78	52.62	60.07	67.26	69.88	72.08	78.33	79.09	96.95	103.60
Pressure Drop at Heat Exchanger Source	Side kF	Pa	77.40	80.40	64.90	68.10	80.70	82.60	80.70	67.10	82.90	66.90	82.90	81.50	82.90	83.10	84.00
Water Flow Source	Side I/s	s	17.28	17.61	36.11	42.21	40.28	50.00	72.03	61.94	85.28	87.78	85.28	107.90	85.28	133.40	134.20
Heat Exchanger in Cooling																	
Pressure Drop at Heat Exchanger User S	de kF	Pa	26.10	53.40	20.60	22.90	41.30	39.80	25.80	41.30	32.00	26.10	37.40	25.60	45.40	26.40	30.20
Water Flow User S	de I/s	s	10.03	14.36	20.35	24.48	28.79	34.72	40.70	48.61	53.01	54.82	57.29	60.49	63.11	75.18	80.42
Pressure Drop at Heat Exchanger Source	Side kF	Pa	24.10	26.50	20.20	23.60	32.70	26.10	24.00	23.30	24.40	24.80	24.40	24.70	29.70	27.40	23.50
Water Flow Source	Side 1/s	s	11.70	16.69	23.58	28.47	33.50	40.32	47.21	56.67	61.36	63.83	66.22	69.85	72.96	86.83	92.94
Refrigerant Circuit																	
Compressors	N	0.	1	1	1	2	2	2	2	3	4	3	4	3	4	4	4
Circuits	N	0.	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Refrigerant Charge *8	kį	g	140	180	177	237	247	358	310	624	730	565	1036	617	1036	890	876
Noise Levels																	
Total Sound Pressure *9	dł	B(A)	75	76	78	76	77	78	79	79	78	80	78	79	79	80	80
Total Sound Power Level in Cooling *1*5*10		B(A)	93	94	96	95	96	97	98	98	98	99	98	99	99	100	100
Total Sound Power Level in Heating *2*5*10		B(A)	93	94	96	95	96	97	98	98	98	99	98	99	99	100	100
Size and Weight "11																	
Width (A)	m	im	2910	2910	2910	2910	2910	3050	3050	3710	4690	3710	4690	4690	4720	4720	4720
Depth (B)	m	im	1000	1000	1000	1560	1560	1620	1620	1710	1660	1710	1890	1660	1890	1890	1890
Height (H)	m	ım	1950	1950	1950	2190	2190	2190	2190	2260	2260	2260	2400	2260	2400	2400	2400
Operation Weight	kç	g	2280	2430	2630	3780	3010	4880	4910	7060	8520	7040	9760	7950	9760	10130	10340

Eurovent Certified Data

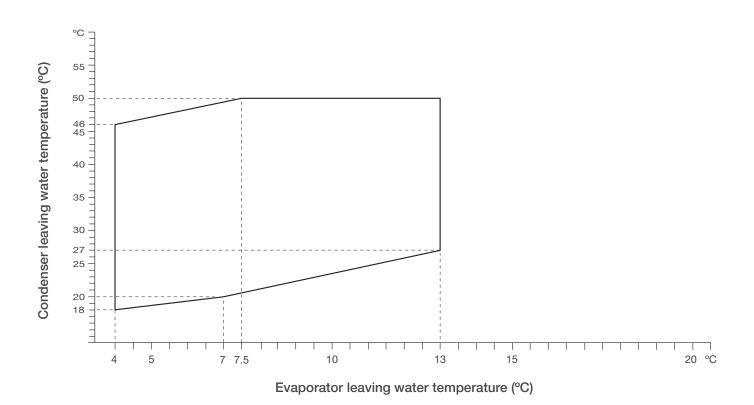

Notes: 1. Plant (side) cooling exchanger water (in/out) 12°C/7°C; Source (side) heat exchanger water (in/out) 30.00°C/35.00°C. 2. Plant (side) exchanger hot water temperature (in/out) 40.00°C/45.00°C; Source (side) exchanger water temperature(in/out) 10.00°C/6.71°C (or the maximum calculated temperature coming from the maximum flow rate allowed). 3. Values in compliance with EN14511. 4. Unit performance with inverter compressor at maximum speeds. 5. Unit performance with inverter compressor at nominal speed. 6. Parameter calculated according to [Regulation (EU) N. 2016/2281]. 7. Data valid for standard units without any additional options and only indicative. Safety values to be considered when cabling the unit for power supply and line-protection. Refer to databook. 8. Theoretical - refer to serial plate for actual charge volumes. 9. Average sound pressure level at 10m distance, unit in a free field on a reflective surface; non-binding value calculated from the sound power level. 10. Sound power level in cooling, indoors, on the basis of measurement taken in compliance with ISO 9614. 11. Unit in standard configuration, without option accessories.


TX2-W-G04 /H Water Sourced Reversible Heat Pump with Inverter Centrifugal Compressors


FRONT VIEW

TX2-W-G04 /H DIMENSIONS AND CLEARANCES

SIDE VIEW



Note: Clearance dimension R2 is from 2500mm to 4000mm depending on model size.

TX2-W-G04 /H OPERATING ENVELOPES

Note: Operating envelopes shown are indicative and should not be used for design. Equipment to be used in low or negative ambient temperatures must be fitted with the low ambient options available. Equipment operating with low or negative evaporating leaving water temperature should use suitable type and concentration of glycol or similar. Additional installation considerations may be required at the limits of the operating envelope. For specific recommendations and limits of each model, please contact your local sales representative.

Telephone: 01707 282880 email: air.conditioning@meuk.mee.com les.mitsubishielectric.co.uk

t

LOG thehub.mitsubishielectric.co.uk

UNITED KINGDOM Mitsubishi Electric Europe Living Environment Systems Division, Travellers Lane, Hatfield, Hertfordshire, AL10 8XB, England. Telephone: 01707 282880 IRELAND Mitsubishi Electric Europe, Plunkett House, Grange Castle Business Park, Nangor Road, Dublin 22, Ireland. Telephone: (00353) 1 4198800 Email: sales.info@meir.mee.com Web: les.mitsubishielectric.ie

Country of origin: United Kingdom - Italy - Turkey - Japan - Thailand - Malaysia. @Mitsubishi Electric Europe 2025. Mitsubishi and Mitsubishi Electric are trademarks of Mitsubishi Electric Europe B.V. The company reserves the right to make any variation in technical specification to the equipment described, or to withdraw or replace products without prior notification or public announcement. Mitsubishi Electric is constantly developing and improving its products. All descriptions, illustrations, drawings and specifications in this publication present only general particulars and shall not form part of any contract. All goods are supplied subject to the Company's General Conditions of Sale, a copy of which is available on request. Third-party product and brand names may be trademarks or registered trademarks of their respective owners.

Note: The fuse rating is for guidance only and please refer to the relevant databook for detailed specification. It is the responsibility of a qualified electrician/electricial engineer to select the correct cable size and fuse rating based on current regulation and site specific conditions. Mitsubishi Electric's air conditioning equipment and heat pump systems contain a fluorinated greenhouse gas, R410A (GWP:2088), R32 (GWP:675), R407C (GWP:1774), R134a (GWP:1430), R513A (GWP:631), R454E (GWP:631), R454E (GWP:616), R454E (GWP:71 or R13242 (GWP:71) These GWP values are based on Regulation (EU) No 517/2014 from IPCC 4th edition. Mitsubishi Electric's air conditioning equipment and heat pump systems contain a hydrocarbon, R290 (GWP:0.02). "These GWP values are based on IPCC 6th edition.

Effective as of April 2025

