

If you've ever heard me talk about how I became an architect, you'll know just how passionate I am about homes and communities and how I believe that buildings designed for and around people are some of the best places to live.

At the moment though, we simply aren't building enough houses, and we haven't for decades, so I'm encouraged that the current government is making the right noises about changing the planning system.

However, we also need a lot more focus on just how sustainable any new homes and communities are and, more importantly, this needs to extend to existing buildings as well because we face a massive crisis in trying to reduce our impact on climate change.

Putting it bluntly, we need to stop 'burning stuff' to heat our homes because it produces too much carbon emissions and this is having a dramatic effect on our planet the only one we have!

At a national level, we have seen power production shift dramatically away from fossil fuel power stations, towards more renewable sources like wind, solar and nuclear. Just recently there were really encouraging headlines about renewable energy overtaking coal as the world's largest source of electricity generation, so we are heading in the right direction.

But on a local level, there is far more that we need to do, and that's why this Report is so important.

There are still around 1.5 million gas boilers sold every year in the UK and none of these will help us reduce the country's carbon emissions or see us reach net zero targets by 2050.

We need to move to electric heating systems, such as heat pumps, and we need to do so much quicker than we are now.

In my role as an Ecodan Ambassador, I've been associated with heat pumps and Mitsubishi Electric for over seven years now and I've seen how much effort has gone in to raising awareness of renewable heating and our need to change the way we heat our homes.

And I've also lived with the technology in my own home because I never get involved in things I don't fully support or believe in.

I've seen how the technology has progressed so that there are now high temperature heat pumps that can directly replace a gas boiler, and which can be fitted in as little as two days.

I've also seen how heat pumps are used at places like Chester Zoo to keep the animals warm while reducing the Zoo's carbon footprint, so if a heat pump can heat a rhino's house, it can heat just about any home.

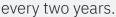
So, the technology is ready, and we also know that heating installers are ready to make the switch from gas heating to heat pumps, but the over inflated price of electricity remains a major issue for both consumers and businesses.

This is why we are calling on the government to remove the green levies from electricity to encourage more to move away from carbon-intensive gas and oil heating.

Research shows that a third of homeowners would consider switching to a heat pump if electricity cost the same or less than gas - a clear indication that pricing reform could really shift the market and help us all build sustainable homes and communities that are fit for the future.

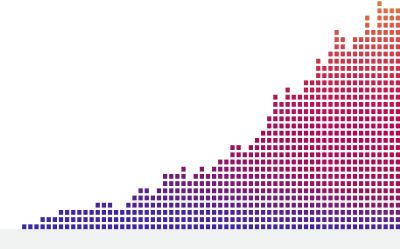
George Clarke

Introduction



As we look back over the past year, it's clear that we have arrived at a critical juncture if the UK is to achieve its target of 600,000 heat pump installations*1 by 2028 and reach net zero by 2050*2. To meet these goals, the approach to boosting heat pump adoption must be refined.

And yet, it's essential to take a moment to reflect on the progress being made. In its most recent progress report to Parliament, the Climate Change Committee (CCC) highlighted a **56% increase** in heat pump installations in 2024, driven largely by increased support from government schemes.


Heat pumps can be up to three times more efficient than gas; therefore, the impact this is having on net zero ambitions is tangible. CCC findings suggest a nearly doubling of emissions reductions from heat pump technology

In August 2025, Mitsubishi Electric and Opinion Matters conducted a survey of 2,000 homeowners in the UK. The findings showed that, with only **5.5% of surveyed UK homeowners currently heating their homes with an air or ground-source heat pump** - a figure that is among the lowest in Europe - the pace of change must be accelerated. Over the past few years, the conversation about net zero has shifted from a point of consensus to one of debate and contention.

Encouragingly, this survey found that 93% of heating installers believe they already have the skills and expertise to install heat pumps, a 32% year-over-year increase from our findings in 2024.

Engaging these politically neutral voices of expertise will help both homeowners and facilities managers understand the benefits of heat pump technology, boosting uptake.

To support heat pump adoption, we must continue to gauge public perceptions of the topic, whether that be homeowners in the residential market or asset managers in the commercial market. But aggregating this data is only the first step. These facts and figures, as valuable as they are, must inform action.

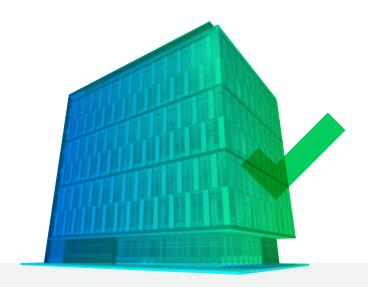
Our report has found that one of the most important ways to increase heat pump adoption is by lowering the cost of electricity. With levies adding an average of £140*3 to the cost of electricity for a typical homeowner, running costs remain too high if homeowners and businesses are to consider installing a heat pump. As the CCC continues to highlight the volatility of the global gas market, largely due to geopolitical factors, the cost of electricity must be decoupled from the cost of gas and reduced if the UK is to meet its installation targets for heat pumps.

Another key piece of the puzzle lies in increasing public awareness and knowledge of low-carbon heating solutions. Our research suggests that this approach must be nuanced - official messaging should consider how current demographics and audiences perceive the technology and what types of messaging they are most receptive to, to engage as many people as possible in support of the green energy transition.

While the UK still lags behind its European counterparts, and there is certainly some way to go if the UK is to meet its targets, our report has found that both the residential and commercial sectors are also poised to accelerate the switch.

Moving forward, the next, and arguably most crucial step, is aligning policy and action with the existing barriers to adoption.

The UK's heat pump journey to date


In 2023, the UK set a target to expand the use of heat pumps to 600,000 installations per year by 2028*4. As we near the end of 2025, it's a good time to take stock of the progress made, the challenges that persist, and consider how to accelerate heat pump adoption in the second half of this ambitious 5-year plan.

Our survey found that gas-based heating systems remain the status quo for UK housing, **used in 75% of homes**, while just 6% of UK homeowners utilise heat pumps.

Both the installation costs and running costs of heat pumps remain key barriers to adoption, as well as doubts, misconceptions and downright disinformation about the suitability of heat pumps for certain homes. Crucially, the high cost of electricity and energy bills is deterring many from making the switch.

This means that to meet the ambitious installation target, there is more to be done to increase both awareness and understanding of the technology and find ways to ease the pressure of high electricity costs.

Amid these challenges, there is also cause for optimism: support for tackling climate change is high on the agenda for UK homeowners - with 80% of surveyed homeowners agreeing that tackling climate change is important. We now need to turn that support into action and boost the transition to low-carbon renewable heating.

It's also key that we consider commercial buildings when we look towards the 2028 adoption target. According to the latest DESNZ data*5, these buildings account for approximately **42% of the country's total carbon output**, a significant share of UK emissions, and many offices, schools, retail, healthcare, and other commercial spaces still rely heavily on gas. To drive decarbonisation forward, we need to bring commercial properties along too - not just our housing stock.

The current government continues to offer support to drive this adoption. For example, for homeowners and small to medium-sized businesses, the Boiler Upgrade Scheme (BUS) offers £7,500 to cover the cost of installing an air or ground-source heat pump.

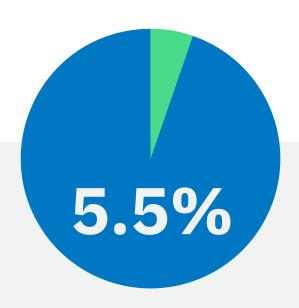
Support schemes also differ regionally, such as the Home Energy Scotland grant and loan, which offers up to £15,000 for efficiency upgrades, including £7,500 for clean heating systems such as heat pumps.

*5

The Public Sector Low Carbon Skills Fund (LCSF)*6 also offers grants and empowers public sector organisations to get the specialist advice and skills needed to develop a sustainable heating solution plan.

While attitudes towards climate change are positive, there are still significant hurdles to overcome for the UK to realise the full potential of renewable heating.

This report outlines the perspectives of homeowners and installers on the shift towards heat pumps, strategies to overcome existing barriers, and the role of government policy in driving this change.



People are still slow to embrace renewables

Gas boilers have long been the norm for heating our homes in this country. For the most part, UK homeowners are both reliant on and satisfied with this familiar option, which is one of the hurdles hindering the adoption of heat pumps.

of UK homeowners currently use an air source or ground source heat pump

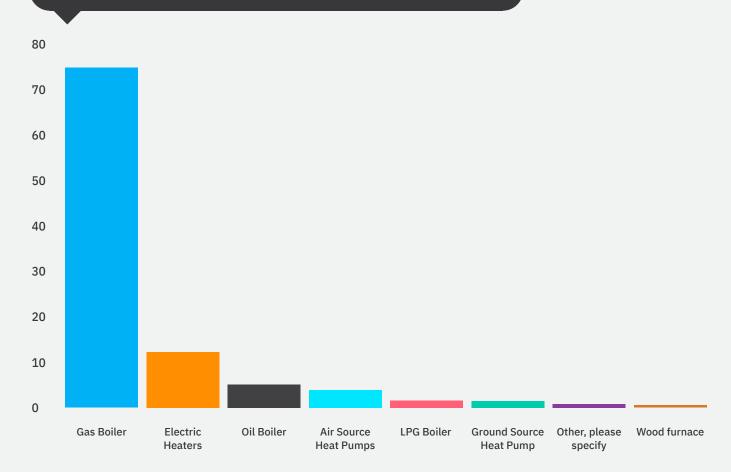
This differs regionally:

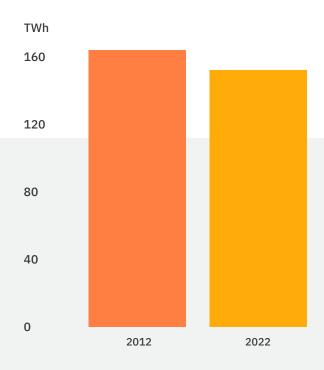
Adoption levels rise to 12% in Greater London

but fall to just 2% in the Northeast

There are also stark differences between age groups - **17.5%** of homeowners aged 25-34 have a heat pump, compared to just **2%** of those over 55.

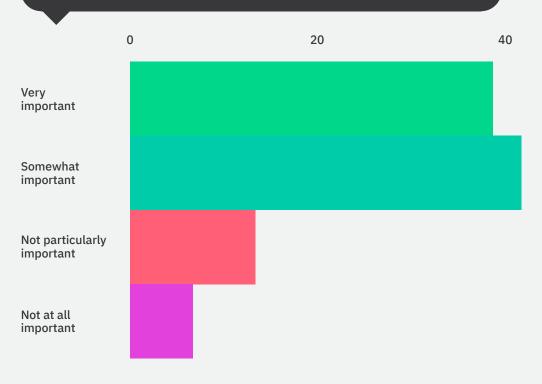
Despite widespread awareness and importance being placed on climate action, it hasn't yet shifted behaviour at scale - awareness alone isn't inspiring widespread change as other factors are at play. Cost and misconceptions surrounding the suitability of heat pumps will both need to be overcome to boost adoption rates among homeowners.


This 'status quo' effect also extends to the commercial sector, with many offices and shops opting to replace boilers like-for-like at the end of their life cycle rather than considering lower-carbon options. Challenging this status quo and encouraging building owners and occupiers to adopt low-carbon alternatives will also be key to meeting the UK government's target of 600,000 installations by 2028.



Buildings have a major role to play in decarbonising society with the Climate Change Committee pointing out that more than **80% of the required emissions savings between 2025 and 2030 must come from sectors other than our energy supply**.

Q. What is currently the primary source of heating in your home?



Commercial buildings used 165 terawatt hours of gas consumption per year in 2012, compared to 152 TWh in 2023, **which is only an 8% reduction in over a decade**.*7

Q. How important, if at all, is reversing climate change to you?

60

Energy affordability is a key concern

UK homeowners are still feeling the impact of the rising cost of living: our research found that the majority (71%) of respondents face higher electricity and gas bills this year than they did in 2024. For 25- to 34-year-olds, this rises to 83%, and it's 80% for homeowners in Greater London.

This is causing an affordability challenge.

A quarter (25%) of homeowners are struggling with the higher cost of their energy bills.

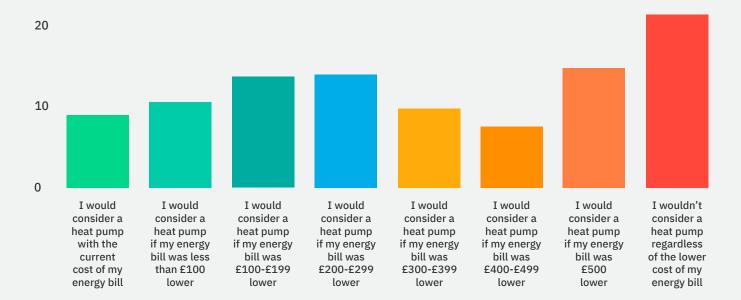
Those hardest hit are 45- to 54-year-olds, with a third (33%) finding their energy bills difficult to pay this year.

Against this backdrop, homeowners are deterred from making the move to a heat pump largely due to concerns about their running costs - a third (33%) said they would not consider a heat pump because high electricity prices make running costs too expensive for them.

The UK's installer base agrees, with **59%** saying that the main consideration homeowners have when choosing a heating solution is the long-term running costs.

To make the switch to heat pumps, UK homeowners would need to see average annual savings of £255 on their energy bills. For 15% of those surveyed, they'd need their bill to be over £500 per year cheaper than it is currently.

Clearly, the desire to make climate-conscious choices is being outweighed by concerns about the cost of electricity.



In our survey of heating installers they felt that the top three barriers for both the residential and commercial sectors were the same: The higher initial costs of heat pumps (65% and 62%); ease of installation (59% and 52%); long-term running costs (59% and 56%)

Q. How much cheaper would your energy bill have to be per year, if at all, for you to consider a heat pump (which runs on electricity) as an option to heat your home?

30

Case study 1:

When it comes to ensuring energy bills are manageable for tenants, **Sovereign Network Group (SNG)** has been taking steps to do just that.

The group is one of the UK's largest social housing providers, and manages over **84,000 homes for 210,000 tenants** across London and the South of England.

In line with the government's ambitions, SNG is committed to making all of its properties net zero by 2050. As part of its Homes and Place Standard, it focuses on installing low-carbon technology in all new-build homes and retrofitting existing homes with low-carbon solutions. In addition to supporting the environment, this is a step towards helping combat fuel poverty.

The group has used Mitsubishi Electric's Ecodan R32 air-to-water heat pumps as a low-carbon solution for home heating.

The most recent pilot scheme with Mitsubishi Electric explored how high temperature Ecodan R290 heat pumps performed with the existing microbore and small-bore pipework in homes. It found that homes could run efficiently with existing pipework, removing one of the biggest barriers to using heat pumps for retrofitting older homes.

The pilot scheme also demonstrated that using the existing pipework meant that a heat pump can be fitted in under two days to reduce the installation costs. Doing so shows that it's possible to cut heating and installation costs while also reducing disruption.

Rebalancing electricity and gas could turn the tide on heat pumps.

If the high cost of electricity is a significant deterrent for homeowners and businesses to adopt heat pumps, it's something that must be rebalanced to increase uptake.

Today, levies make up 16% of the final price of electricity, but only 5.5% of the final price of gas*8 - adding £140 to the average annual electricity bill, and £50 to the gas bill for a typical household.

In short, these levies make the cost of running electrical systems - like heat pumps - more expensive than their gas counterparts. If we want to encourage the uptake of more environmentally friendly electrical solutions, this needs to change.

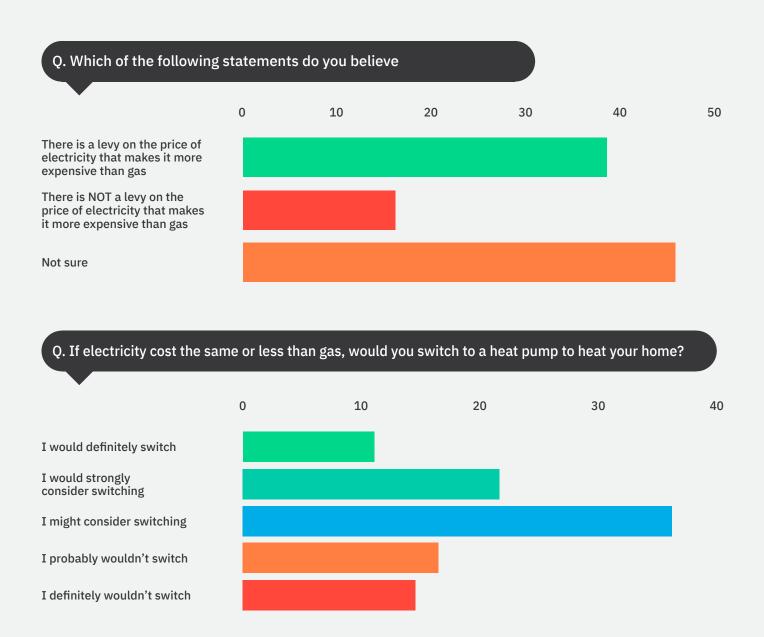
Many homeowners are unaware that these levies exist - **46% were unsure if such levies existed, and 16% believed there were no such levies in place**. These levies are a significant factor in the total cost of electricity, but they often go unnoticed by the majority of people.

So, what impact would addressing these levies have in practice? Our research found that:

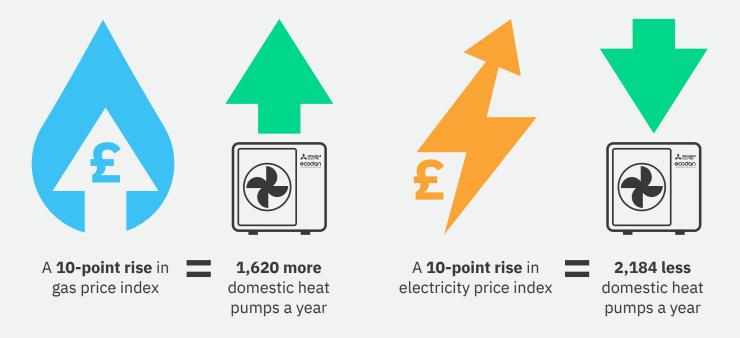
33% of UK
homeowners would
switch or consider
switching from their
current form of heating
to a heat pump if
electricity cost the
same or less
than gas

For 18–24year-olds, this rises significantly to **61%**

and
54%
of 35–44year-olds
would consider
the switch


What's more, **95% of installers** agreed that decoupling electricity from gas would help to increase the uptake of heat pumps in both residential and commercial markets.

Perhaps unsurprisingly, commercial real estate - including restaurants, retailers, and hospitals - also considers the running costs of heating and cooling equipment as a key consideration. Levy reform would therefore make large-scale heat pump rollouts in the commercial sector more viable, helping the sector achieve considerable emissions and cost savings.



Research from **Doctor Ed Manderson, Lecturer at the Department of Economics at the University of Manchester**, reiterates the impact of electricity prices on heat pump adoption in private households through his own research. Using data from January 2016 to June 2025, covering 215,000 MCS certified domestic installations, alongside official energy price indices from the Office for National Statistics, he found a clear pattern:

When gas prices rise, households are more likely to install heat pumps, but when electricity prices rise, installations fall.

For example, a 10-point increase in the gas price index (about an 8% increase compared to the average) is linked to 135 extra installations each month (1,620 a year, around 7% above the average).

By contrast, a 10-point increase in the electricity price index (a 7% increase from the average) is linked to 182 fewer installations each month (2,184 a year, about 9% below the average).

The data strongly indicate that the UK's heat pump rollout is being constrained by the imbalance of electricity and gas price.

If energy costs were rebalanced to narrow that gap, we could expect around 2,000 more heat pump installations each year -a significant 9% boost to the current rate of adoption.

He also found that government policy has made a difference. The launch of the more generous Boiler Upgrade Scheme in October 2023 is estimated to have boosted heat pump uptake by around 1,320 installations a month, or almost 16,000 a year, on top of the existing trend.

The same pattern is found in the commercial sector, though on a smaller scale because commercial air-source heat pump installations don't legally require MCS certifications, and therefore far fewer MCS certified installations exist (around 11,000 since 2021).

Here, higher gas prices are linked to 40 more installations per month (480 annually), while higher electricity prices are linked to 47 fewer per month (564 annually).

Overall, this evidence suggests that making electricity cheaper relative to gas, expanding subsidies, and providing clearer support for households and commercial buildings will be crucial if the UK is to meet its heat pump targets.

Rebalancing energy costs = an expectation of **2,000 more** heat pump installations (a 9% boost above average)

The increase in the Boiler Upgrade Scheme in 2023 has led to almost **16,000 additional heat pumps** on top of the existing trend

Other barriers to heat pump adoption persist

The cost of electricity is clearly a key factor impacting heat pump adoption, but it is not the only consideration.

For 35% of homeowners, being satisfied with their current heating system is a key reason not to switch to a heat pump, with this figure rising to 45% among those aged 55 and above.

Incentivising homeowners to switch to a heat pump when their current heating system isn't at the end of its life cycle is a factor that must be addressed, and where funding, such as the Boiler Upgrade Scheme, can provide the financial support to make the switch more affordable.

As oil-fired central heating becomes increasingly expensive to run, a reasonable reduction of the running cost of a heat pump can also encourage homeowners to make the switch when their existing heat system needs to be replaced.

Case study 2:

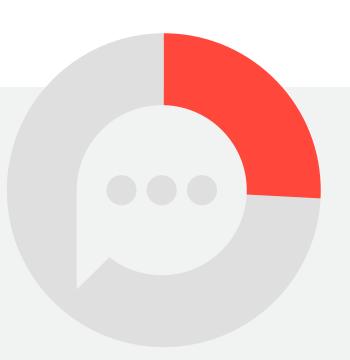
When Zena and Phil bought their property in Daventry, a small market town in Northamptonshire, they knew they wanted to replace their oil-fired central heating system, as it had become increasingly expensive to run.

Moving in on the cusp of winter, they found themselves ramping up their heating, constantly having to reorder oil -a tedious task which involved having to phone up the provider each time and getting an oil truck and its accompanying aroma down the driveway to fill up their tank - and eventually spending over £1,000 on oil in the first six months in their new home.

When their boiler needed replacement, they began searching for alternative solutions. After attending the Ideal Home Show, Zena and Phil learned about the Mitsubishi Electric Ecodan heat pump.

Through their own research, they discovered the grant available through the Boiler Upgrade Scheme, which offered up to £7,500 towards the cost of a heat pump.

Zena and Phil decided that a heat pump was the right option for them to save money and reduce their reliance on oil. They opted for an Ecodan R290 8.0 kW outdoor unit and a 250-litre Ecodan pre-plumbed cylinder, following an assessment by installer Garry Hamilton Ltd.


As part of the installation process, Zena and Phil were able to enjoy upgraded double-panel radiators, a constant ambient temperature and accessible and smart controls via Mitsubishi Electric's MELCloud app.

Another factor is homeowners being influenced by negative stories.

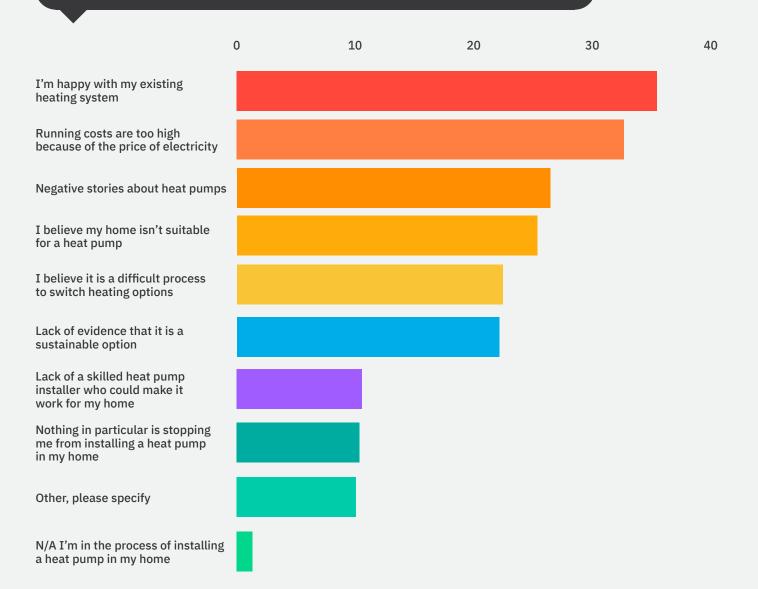
26% of homeowners say their opinion of heat pumps has been influenced by negative stories - an increase from 19% in 2024. For over 55s, this percentage increases to 35%.

Linked to this, **21%** of homeowners also stated that they would not consider installing a heat pump, regardless of how much it could lower their energy bills. This rose significantly to **33%** of those over 55.

Doubts and misinformation also persist. 22% of homeowners do not believe sustainability claims around heat pump technology (22%), and a quarter (25%) do not believe their home is suitable for a heat pump. Finally, 22% believe that switching from their current method of heating to a heat pump is a difficult process.

Incorrect or exaggerated stories about heat pumps - which often make claims regarding noise, reliability, and cost - are proving a real challenge to their uptake. The government is already investigating the extent of this misinformation. Earlier in 2025, the government commissioned the Behavioural Insights Team (BIT)*9 to investigate how misinformation shared in the media and by other stakeholders is limiting adoption.

A broader discourse about climate change can also have an impact. The DESNZ Public Attitude Tracker, Winter 2024*10, revealed a generational divide in how people receive information about addressing climate change. Those aged 65 or over were less likely than other age groups to get information from charities, environmental and campaign groups, instead showing a preference for mainstream channels such as TV and radio.



Q. What, if anything, is stopping you from installing a heat pump in your home?

When it comes to commercial heat pump adoption, another barrier is the perceived complexity of installation.

Hotels, restaurants, and office buildings all need to ensure that building occupants are not disrupted for prolonged periods due to installation work -especially when closing the business would have a direct impact on their bottom line.

Yet few realise that heat pump systems can be designed using a modular approach whereby installation is quicker, simpler and more manageable. The transition to low-carbon heating can even being staged over time or a bivalent approach employed whereby a heat pump is installed alongside the existing heating system allowing gradual phasing of the changeover to renewable heating.

Case study 3:

Exchange Quay offers an example of how commercial buildings can be retrofitted with minimal disruption.

Originally developed in the 1980s, Exchange Quay has been a focal point of commerce in Manchester ever since.

In 2025, one of its buildings required an upgrade to reduce energy use and its carbon footprint, without causing significant disruption to the existing tenants working inside.

Faced with the need to improve an Energy Performance Certificate (EPC) rating of D, air conditioning contractors at Austin Broady consulted Mitsubishi Electric. They opted to replace the 600-kilowatt gas-fired boilers with **12 CAHV air-source heat pumps** from Mitsubishi Electric.

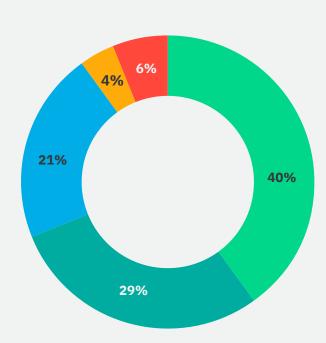
Multiple CAHV units were cascaded together to achieve up to 688kW as part of a system specifically designed for the building. These heat pumps were responsible for space heating on all ten floors of Building Eight at Exchange Quay, utilising four-pipe fan coils that were retained from the existing installation.

As a result of these upgrades, the building has **improved its EPC rating to B**. For commercial landlords across the country looking to retrofit and improve heating systems without disturbing existing tenants, the lessons learnt at Exchange Quay should serve as a great example.

More government support needed

While various grants and incentives exist, not enough homeowners or businesses are aware of them. Less than half (45%) of homeowners surveyed were aware of the Boiler Upgrade Scheme despite it having been running for over three years and the funding available having been increased at the start of this year.

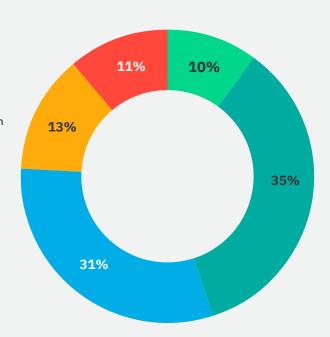
Raising awareness of the grant would have a considerable impact: 31% of those who didn't know the grant was available said it would make them more likely to switch to a heat pump.


There is also a mandate from the public for the government to do even more to support the adoption of environmentally friendly heating, with 69% of homeowners agreeing that more funding should be made available.

Installers also agree, with half (50%) believing that there should be more government support for homeowners, and 48% believing that there should be more support for businesses. While households can access the Boiler Upgrade Scheme, tailored incentives for SMEs, retail outlets and other non-domestic buildings could accelerate commercial uptake, creating shared momentum across sectors.

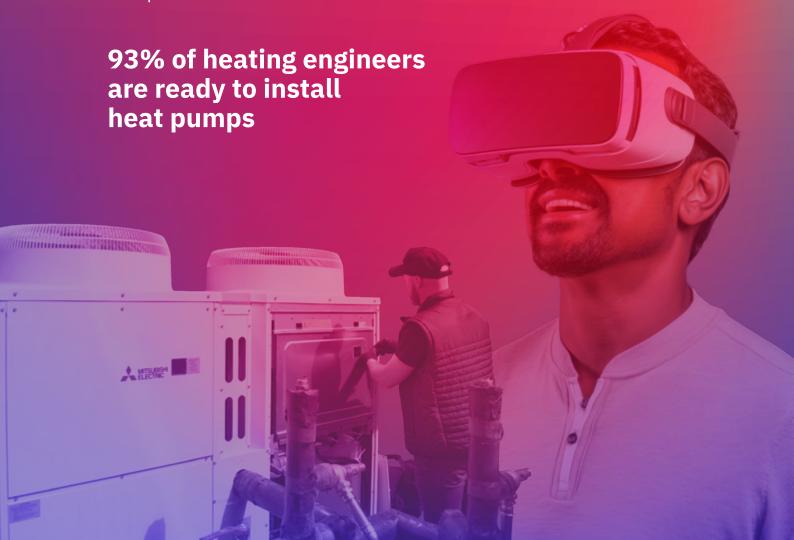
Q. Which of the following statements most applies to you?

- I would somewhat support the government to do more to help people switch to environmentally friendly heating options
- I would feel neutral in supporting the government to do more to help people switch to environmentally friendly heating options
- I would somewhat oppose the government to do more to help people switch to environmentally friendly heating options
- I would strongly oppose the government to do more to help people switch to environmentally friendly heating options



Q. Did you know you could be eligible for a government grant of £7,500? towards the cost of installing a heat pump? Would this make you more likely to switch from your current heating system?

- I knew about the grant and it makes me more likely to switch
- I knew about the grant but it doesn't change my view
- I didn't know about the grant, but it makes me more likely to switch
- I didn't know about the grant, but it doesn't change my view
- I wouldn't consider a heat pump regardless of the grant


The Boiler Upgrade Scheme

Understanding the challenges associated with encouraging heat pump adoption in the UK, enables us to consider essential steps to overcome them.

Reform the cost of gas and electricity

Ensuring that electricity prices - and the resulting energy bills - are fair and proportionate must be a priority.

The current levy system disproportionately impacts those who use electricity to heat their homes and businesses, with the potential for high running costs deterring people from switching to electric systems like heat pumps.

Fair pricing would support the adoption of low-carbon technologies as consumers and businesses would not be deterred by artificially inflated bills. Clear, stable pricing and equitable levies can be achieved by rebalancing these levies. As a result, we can provide households and businesses certainty over future energy costs, empowering them to invest in low-carbon technologies without concerns about their energy bills.

Promote the support available

In addition to running costs, the upfront cost of heat pump installation is currently deterring many from making the switch - especially amongst younger homeowners. Grants such as the Boiler Upgrade Scheme must continue to be promoted to ensure more homeowners take advantage of the support that already exists.

A two-pronged approach, which helps homeowners save on both the upfront cost of a heat pump and its long-term running costs, will be key to increasing uptake. The SNG pilot study - as aforementioned - demonstrated how installation time can be reduced to two days, significantly cutting installation costs. A similar reduction in private domestic household installations would therefore similarly cut installation costs, and boost adoption rates.

The Exchange Quay case study also shows that commercial buildings can benefit from heat pump installations with minimum disruption to occupants.

Develop targeted awareness campaigns

Greater awareness about heat pumps is needed across the board, and it's clear that homeowners need to understand the technology better. In fact, around half (48%) of the UK's installer base say that better education on the positives of heat pumps for both homeowners and businesses is necessary.

Government-led, targeted awareness campaigns can help cut through the noise and ensure that homeowners hear the facts about heat pumps – not misinformation. Examples of the wide range of homes and commercial properties that have benefited from heat pumps, as well as data on their ability to operate at low ambient temperatures, quiet operation, and more, will help replace misconceptions with facts. As an indicator of what's happening in commercial buildings, our 2025 report on sustainability action in the retail sector*¹¹ highlighted that the majority of facilities managers believe that improvements in temperature control can create a more comfortable experience, supporting greater customer and staff satisfaction. Raising awareness of heat pump technology, and its commercial and operational benefits will be key to driving adoption rates.

Support installers

Installers play a crucial role in increasing the adoption of heat pumps.

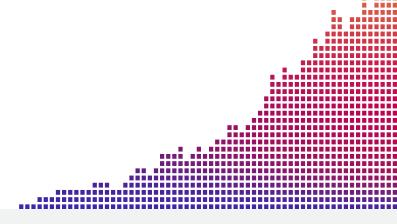
Our research found that **93% of existing heating** engineers believe they have the skills and experience to install heat pumps - an increase from 61% last year.

The installer base is in place, but ongoing upskilling and training opportunities will be crucial to continually attract new installers to the industry and ensure their skills remain current. Additionally, arming installers with the right information to support and guide homeowners towards heat pumps as a viable option will be crucial, as the installer base is a trusted source of information among homeowners.

Build certainty

When homeowners and businesses have clear signals on the technologies and actions needed to support the UK's decarbonisation, they can confidently invest in solutions like heat pumps that will make them better off, more energy efficient, and fully aligned with the country's long-term low-carbon vision.

Providing a clear roadmap is also crucial to unlock the commitment and investment required for widespread adoption of low-carbon technologies. This is particularly the case for the commercial sector, which has seen less policy change and financial support towards decarbonising, compared to the residential sector.


Clarity around the Future Homes and Building Standards, for example, will be key to encouraging investment in the renewable heating sector for the future.

As we continue to tackle climate change in the UK, we must stay committed to the transition to renewable energy and the adoption of heat pumps. The way we heat our homes and commercial buildings has a huge impact on our emissions, but barriers clearly remain to make large-scale adoption a reality.

The cost of running heat pumps on electricity, partly due to levies, remains a significant barrier - especially at a time when energy bills are already high. While most agree that tackling climate change is necessary, this alone is not enough to drive change at the required pace; affordability must also be addressed.

Paired with this, negative stories and misinformation are increasingly deterring people from making the switch to heat pumps.

Yet there are encouraging signs. The UK's installer base feels confident it has the skills to provide heat pumps, and the younger generation (25-34-year-olds) is more than three times more likely to have a heat pump in their home.

The task ahead is twofold: to make choosing and running heat pumps more affordable and turn the tide on public attitudes.

By rebalancing the cost of electricity against gas to reduce running costs, committing to incentives to tackle upfront expenses, and combating misinformation with facts, the UK can meet its heat pump targets and ensure its built environment plays a key role in decarbonising the country.

Telephone: 01707 282880 email: lesmarcomms@meuk.mee.com les.mitsubishielectric.co.uk

UNITED KINGDOM Mitsubishi Electric Europe Living Environment Systems Division,

Travellers Lane, Hatfield, Hertfordshire, AL10 8XB, England. Telephone: 01707 282880

IRELAND Mitsubishi Electric Europe,

Plunkett House, Grange Castle Business Park, Nangor Road, Dublin 22, Ireland. Telephone: (00353) 1 4198800 Email: sales.info@meir.mee.com Web: les.mitsubishielectric.ie

Country of origin: United Kingdom - Italy - Turkey - Japan - Thailand - Malaysia. ©Mitsubishi Electric Europe 2025. Mitsubishi and Mitsubishi Electric are trademarks of Mitsubishi Electric Europe B.V. The company reserves the right to make any variation in technical specification to the equipment described, or to withdraw or replace products without prior notification or public announcement. Mitsubishi Electric is constantly developing and improving its products. All descriptions, illustrations, drawings and specifications in this publication present only general particulars and shall not form part of any contract. All goods are supplied subject to the Company's General Conditions of Sale, a copy of which is available on request. Third-party product and brand names may be trademarks or registered trademarks of their respective owners.

Note: The fuse rating is for guidance only and please refer to the relevant databook for detailed specification. It is the responsibility of a qualified electrician/electrical engineer to select the correct cable size and fuse rating based on current regulation and site specific conditions. Mitsubishi Electric's air conditioning equipment and heat pump systems contain a fluorinated greenhouse gas, R410A (GWP:2088), R32 (GWP:675), R407C (GWP:1774), R134a (GWP:1430), R513A (GWP:631), R454B (GWP:466), R515B (GWP:292), R454C (GWP:148), R1234ze (GWP:7) or R1234yf (GWP:4). *These GWP values are based on Regulation (EU) No 517/2014 from IPCC 4th edition. Mitsubishi Electric's air conditioning equipment and heat pump systems contain a hydrocarbon, R290 (GWP:0.02). *These GWP values are based on IPCC 6th edition.

Effective as of October 2025

